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Abstract

Introduction: Isocitrate dehydrogenase (/[DH) mutation status and grade define subgroups of diffuse gliomas
differing based on age, tumor location, presentation, and prognosis. While some biologic differences between IDH
mutated (IDH™") and wild-type (IDH"") gliomas are clear, the distinct alterations associated with progression of the
two subtypes to glioblastoma (GBM, Grade IV) have not been well described. We analyzed copy number alterations
(CNAs) across grades (Grade II-lll and GBM) in both IDH™" and IDH"" infiltrating gliomas using molecular inversion
probe arrays.

Results: Ninety four patient samples were divided into four groups: Grade I1-1l| IDH™" (n =17), Grade lI-Ill IDH™ " (n
=28), GBM IDH"" (n = 25), and GBM IDH™" (n = 24). We validated prior observations that IDH"" GBM have a high
frequency of chromosome 7 gain (including EGFR) and chromosome 10 loss (including PTEN) compared with
IDH™ " GBM. Hierarchical clustering of IDH™" gliomas demonstrated distinct CNA patterns distinguishing lower
grade gliomas versus GBM. However, similar hierarchical clustering of IDH"" gliomas demonstrated no CNA distinction
between lower grade glioma and GBM. Functional analyses showed that IDH"" gliomas had more chromosome gains
in regions containing receptor tyrosine kinase pathways. In contrast, IDH™" gliomas more commonly demonstrated
amplification of cyclins and cyclin dependent kinase genes. One of the most common alterations associated with
transformation of lower grade to GBM IDH™" gliomas was the loss of chromosomal regions surrounding PTEN. IDH™"
GBM tumors demonstrated significantly higher levels of overall CNAs compared to lower grade IDH™ " tumors and all
grades of IDH"" tumors, and IDH™" GBMs also demonstrated significant increase in incidence of chromothripsis.

Conclusions: Taken together, these analyses demonstrate distinct molecular ontogeny between IDH"" and IDH™"
gliomas. Our data also support the novel findings that malignant progression of IDH™" gliomas to GBM involves
increased genomic instability and genomic catastrophe, while IDH"" lower grade tumors are virtually identical to GBMs
at the level of DNA copy number alterations.
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Introduction

Gliomas are the most frequent primary malignant brain
tumors with an annual incidence of approximately
20,000 cases in the United States [9]. Glioblastoma (GBM)
is the most common glioma and remains nearly uniformly
fatal, with a median survival under 16 months in aggres-
sively treated patients [17]. While these tumors are cur-
rently diagnosed by histopathology alone and generally
treated based on histology and grade, recent findings iden-
tifying distinct molecular subgroups within these tumor
types strongly suggest that improving treatments and
patient survival will require detailed understanding of
the biological and clinical differences between these
subgroups.

Histopathologically, diffuse gliomas are categorized ac-
cording to the WHO by histology (Astrocytoma, Oligo-
dendroglioma, or Oligoastrocytoma) and grade [lower
grade (grade II/III) versus glioblastoma (GBM, grade
IV)]. Clinically, GBMs have been classified as primary or
secondary on the basis of clinical presentation [34]. Sec-
ondary GBMs, which are more common in young
adults, display evidence of progression from a lower-
grade tumor, whereas primary GBMs, which are more
common in older adults, present as advanced cancers at
diagnosis [28]. Recently, large scale efforts have been
made to identify the major genetic and epigenetic alter-
ations and to define important molecular subtypes in
GBM and lower grade gliomas [30, 43, 41]. The stron-
gest prognostic factor for all glioma histologies is muta-
tion in one of the isocitrate dehydrogenase genes (IDH1
or IDH2) [48], and mutation of these genes is seen at
higher frequencies in lower grade gliomas and secondary
GBMs.

Chromosome abnormalities in gliomas have been as-
sociated with various subgroups. A summary of over 400
GBMs showed gains in EGFR (7pl2) in 30 %, GLI/
CDK4/MDM?2 (12q13-14) in 13 %, PIK3C2B/MDM4
(1g32) in 8 %, PDGFRA (4q12) in 8 %, and MET (7q31)
in 4 % with deletions in CDKN2A/2B (9p21) in 47 %,
PTEN (10¢23) in 10 %, and RBI (13q14) in 6 % [31]. Pri-
mary GBMs commonly have gains in chromosome 7
and 19 and loss of chromosome 10 [31, 22, 25, 26, 46,
2]. Secondary or IDH mutated glioblastomas are less
likely to have the above alterations and more likely to
have gains in 8q and 10q accompanying simpler karyo-
types [27, 22, 20, 25]. Grade II astrocytomas have been
less well studied, with gains in 7q described in two stud-
ies [7, 12], and other alterations not replicated [7, 12,
46]. Although some groups have found worse prognosis
in GBMs with either EGFR or chromosome 7 amplifica-
tions [15, 6, 26, 13], others, including the largest study
(n=532), found no association with outcome [14, 46,
13]. One reason for this inconsistency may be confound-
ing due to the association of EGFR amplification with
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other known prognostic factors, such as age, G-CIMP
status, or IDH mutation status [8, 3, 27, 22, 25, 20]. Only
one study has looked at the prognosis of copy nuber al-
terations (CNAs) within subgroups defined by IDH
status, suggesting that chromosome 7p gain and 7P53
loss are prognostic in grade III gliomas with IDH muta-
tion [37].

Gliomas have chromosomal instability, with a propen-
sity for recurring patterns of CNAs [21, 36]. Although
multiple mechanisms may be responsible for CNAs in
gliomas, chromothripsis is a recently described form of
localized CNA due to chromosomal catastrophe that
may occur commonly in gliomas [18, 23]. Chromothrip-
sis, which literally means “chromosome shattering,” can
be identified from CNA technologies such as SNP mi-
croarrays. The association of chromothripsis with clin-
ical factors and prognosis in gliomas has not been
explored to date.

The purpose of this study is to determine CNAs
within glioma subgroups defined by grade and IDH sta-
tus. We deliberately chose to maximize the percent of
IDH™" grade IV gliomas and IDH"' lower grade gli-
omas, as these are rare in most other studies. In
addition, we examine prognostic CNAs within each gli-
oma subgroup and chromothripsis as a function of grade
and IDH status.

Materials and methods

Samples and nucleic acid extraction

We analyzed formalin-fixed, paraffin-embedded (FFPE)
glioma specimens from 94 patients from M.D. Anderson
Cancer Center (Houston, TX) and 20 autopsied normal
brains (controls) from Huntsman Cancer Institute,
University of Utah (Salt Lake City, UT). IRB approval
was obtained from each institution. /DH mutation status
was confirmed using direct sequencing [42]. Gliomas
were categorized by a single neuropathologist (KA) as
either high grade (GBM) or lower grade (grade II or III).
DNA was isolated using the Recoverall Total Nucleic
Acid Isolation kit (AM1975, Applied Biosystems/Ambion,
Austin, TX) and quantified with a high sensitivity, double
strand specific, nucleic acid, fluorescent stain (PicoGreen,
P7589, Invitrogen, Carlsbad, CA).

Copy number analysis

The DNA was plated in a 96-well plate with concentra-
tion goal of 7.5 ng/ul in a total volume of 40ul (300 ng
total). The completed plates were sent to the Affymetrix
Research Services Laboratory at Santa Clara, CA, and
the OncoScan™ FFPE Express MIP assay was run as pre-
viously described [45, 35, 44]. The raw MIP data from
the completed assay was loaded into Nexus Copy Num-
ber (BioDiscovery, Inc., El Segundo, CA). Stringency cut-
offs for probe performance included call rates >90 % and
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standard deviations <0.3. BioDiscovery’s SNP-Rank Seg-
mentation algorithm with Quadratic Wave Correction, a
statistically based algorithm similar to Circular Binary
Segmentation (CBS), was used to make copy number
and loss of heterozygosity (LOH) calls [29]. The signifi-
cance threshold for segmentation was set at 5.0E-7 and
required a minimum of five probes per segment. CNA
thresholds were based on sample mosaicism, and set at
0.4 and —0.4 units of copy number from diploidy. High
gain and homozygous loss were denoted by 1.2 and -1.2
units of copy number from diploidy. Genes were assigned
to regions using the NCBI36/hgl8 genome assembly on
the UCSC genome browser. Gene gain was considered
based on the copy number for that gene, without regard
for entire chromosome gain or loss.

Statistics

In order to assess the significance of the genomic alter-
ations, Genomic Identification of Significant Targets in
Cancer (GISTIC) was used to define deletions and gains
and to calculate the g-value [40, 39], taking into account
the frequency, amplitude and focality of the observed
gains and deletions. CNAs with g < 0.25 were considered
significant. Univariate and multivariate Cox proportional
hazards models were fit to the data using Cox regression
in SAS 9.3. Multivariable models were built using back-
ward stepwise regression from a model including all var-
iables with p <0.1 in univariate analysis and maintaining
variables with p <0.05 in the multivariate analysis. Haz-
ard ratios and p-values from the associated log-rank tests
were reported. P-values for copy number alterations were
adjusted using the Benjamini & Hochberg step-up false
discovery rate (FDR) controlling procedure [1]. The
adjustment was done separately for each analysis. Hier-
archical clustering was done using complete linkage disre-
garding the sex chromosomes. We also used gene ontology
analysis to identify altered pathways within and between gli-
oma subgroups using the ToppGene system [5]. We disre-
garded pathways determined by genes grouped together on
a single chromosome and, thus, affected as a single group
by large CNAs. The heatmap in Fig. 3d was generated using
the HeatMapImage module from Genepattern using the
default color scheme [33]. Fisher’s exact test was used for
contingency table analyses.

Results

Population

The cohort included a total of 94 diffuse gliomas: 17
Grade II-III IDH1 wild type (IDH1"), 28 Grade II-III
IDH1 mutant (IDH1™), 25 Grade IV (glioblastoma,
GBM) IDH1Y, and 24 Grade IV IDH1™". Thirty-four
patients (36 %) were female, and sixty (64 %) were male.
The median survival for the population as a whole was
112 weeks, comparable to previously reported survival
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data. As expected, tumor grade (HR =2.2, p =0.003) and
IDH status (HR=26.7, p<0.0001) were independent
predictors of survival (Fig. 1a). The median survival was
37.4 weeks for patients with IDH"* GBM, 65.4 weeks for
patients with IDH"" Grade II-III gliomas, 270.3 weeks
for patients with IDH™"* GBM, and 604.3 weeks for pa-
tients with IDH™""* Grade II-III tumors (Fig. 1a). Indeed,
IDH mutation status was a stronger prognostic factor
than grade, as IDH" lower grade gliomas had a worse
prognosis than IDH™" grade IV gliomas, a finding previ-
ously observed in independent datasets [48, 11].

Copy number alterations (CNAs) by subgroup

CNAs identified as significant within each of the four
clinical/molecular subgroups using GISTIC g-values
for CNAs are shown in Fig. 1b Due to their distinct
chromosomal abnormalities and clinical characteristics,
the lower grade oligodendroglial tumors with 1p/19q co-
deletion (n=5) were analyzed separately (Fig. la,c). A
complete list of GISTIC significant CNAs in each
subgroup defined by IDH status and grade is given in
Additional file 1: Table SI.

On a global scale, different patterns of CNA were seen
in IDH™" and IDH"* gliomas. Within IDH"* gliomas,
the significant CNAs observed in lower grade and GBM
tumors were generally very similar, including gain of en-
tire copies of chromosome 7, loss of entire copies of
chromosome 10, and focal losses at chromosome 9
around the CDKN2A/CDKN2B locus. On the other
hand, IDH™" lower grade gliomas and GBMs demon-
strate distinct CNAs associated with grade (described
further below). Copy number differences between IDH""
gliomas and IDH™" gliomas, regardless of grade, are
listed in Additional file 2: Table S2 and shown in Fig. 2a.

IDH"* gliomas are similar regardless of grade

To examine molecular subgroups within tumors sepa-
rated by IDH and 1p/19q status, we used unsupervised
hierarchical clustering. In IDH"" gliomas, lower grade
and grade IV gliomas clustered together in one large top
level cluster (Fig. 2b), indicating that lower and high
grade IDH"" tumors share similar CNA alterations. The
CNA alterations seen most frequently across all grades
of IDH"* gliomas were broad gain of chromosome 7 and
loss of chromosome 10 (Arrows, Fig. 2b). This pattern of
large CNAs in IDH"" gliomas contrasts with IDH™" gli-
omas, in which changes on chromosomes 7 and 10 were
either absent or more focal around the EGFR, MGMT,
and/or PTEN genes (Arrows, Fig. 2c).

Despite the similarity between IDH"" lower grade ver-
sus grade IV gliomas on clustering analysis, there were a
few chromosome areas with significant differences be-
tween the two grades (Additional file 3: Table S3 and
Fig. 3a). Interestingly, there were no CNAs that were
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Fig. 1 a. Kaplan-Meier curves of five groups of gliomas determined by grade, IDH mutation status, and 1p/19q deletion. All 94 patients were
included. b. Chromosome maps from GISTIC analysis of four subgroups of gliomas defined by IDH status and grade. The y-axis gives GISTIC
g-values. Red indicates deletions and blue indicates gains. ¢. Chromosome maps from GISTIC analysis for grade II-Ill IDH mutated gliomas
separated by 1p/19q status

more common in high grade IDH"' gliomas than in
lower grade IDH"* gliomas. Rather, there were several
chromosomal regions, which are listed in Additional file
3: Table S3, that were less likely to be gained in grade IV
(IDH"") gliomas than in lower grade IDH™ gliomas.

Many of these regions contain tumor suppressor genes
such as TP53 or XRCCI, as well as putative proto-
oncogenes BCL3, CDK4, and HIF3A. The fact that no
CNAs were more common in high grade IDH"" gliomas
than in lower grade IDH"" gliomas supports the concept
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Fig. 2 In all chromosome maps, chromosomes are along the x-axis. The y-axis gives the percent of samples with deletion (red) or gain (blue) at
that locus. For individual samples,chromosome abnormality calls are shown. a. Comparison of IDH wild type gliomas and /DH mutated gliomas.
For each type of glioma, the chromosome map is shown. The top graph indicates the difference in the percent of samples with gains (blue) and
deletions (red) at each locus between the two groups. Up means more common in IDH wild type gliomas and down means more common in
IDH mutated gliomas. b. Hierarchical clustering of IDH wild type gliomas is shown below a chromosome map of all IDH wildtype gliomas. Grade
is indicated by the rectangles next to the hierarchy tree with blue indicating grade IV and orange indicating lower grade. c. Hierarchical clustering
for 1p/19g non-co-deleted, IDH mutated gliomas is shown below a chromosome map of all1p/19g non-co-deleted, IDH mutated gliomas. Grade
is indicated by the rectangles next to the hierarchy tree with blue indicating grade IV and orange indicating lower grade

that the recurring copy number aberrations seen in IDH"*  gliomas. These pathways included base excision repair,
GBM are likely to be present in grade II-III precursor tu-  telomerase extension, nucleotide excision repair, and re-
mors. Alternatively, the data are consistent with the possi-  pair of abasic sites, suggesting a small window of sensi-
bility that subclones from the lower grade IDH"" tumors  tivity may exist to DNA damaging agents early in IDH"
can progress into grade IV gliomas (Additional file 3: =~ GBM development.

Table S3 and Fig. 3a).

Using functional gene ontology analysis to identify  Progression to grade IV in IDH™ " gliomas involves losses
relevant pathways associated with significant CNAs, we  on chromosome 10 and increased chromosome instability
found that IDH"" lower grade gliomas were enriched for =~ Among 1p/19q non-co-deleted IDH™""* gliomas, unsuper-
alterations in pathways involving RB/checkpoint signal-  vised clustering identified two major clusters with signifi-
ing, kinase binding, PI3K/AKT signaling, and cell cycle cantly different percent of high and lower grade gliomas
control. We also identified the pathways enriched in in each cluster (p=0.018). One large cluster included
CNAs that differed between lower and high grade IDH" 83 % (20) of the IDH™" GBMs but only 48 % (11) of the
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lower grade IDH™" gliomas. The other predominant clus-
ter contained 35 % (8) of the lower grade IDH™" gliomas
and 12 % (3) of the IDH"* GBMs. A third smaller cluster
contained one GBM and four lower grade gliomas (Fig. 2c).
The most significant difference (P =5 x 107°) between the
two largest clusters was loss of the terminal end of the q
arm of chromosome 10 including MGMT, which occurred
in 80 % of the cluster with most of the GBMs and 9 % of
the cluster with primarily lower grade gliomas (Additional
file 4: Table S4). Loss of PTEN, which is more proximal on
chromosome 10, was also associated with the two largest
clusters, although not as tightly. Thus, it is not clear if the
important gene on chromosome 10 is PTEN or MGMT or
both.

Grade IV IDH™" gliomas are considered to be sec-
ondary GBMs that have progressed from lower grade gli-
omas. Therefore, differences between lower grade and
grade IV IDH™" gliomas may indicate genes or path-
ways that are important for progression of IDH™" gli-
omas. In addition to the losses in 10q indicated above,
grade IV IDH™" gliomas were more likely to have gains
of 1q25.3 (SMG7, NCF2), 1q32.1 (KIF14, DDXS59,
BTG2), 6p21.1 (HSP90ABI and other genes) and loss of
3p21 (multiple genes). A broad loss of heterozygosity
(LOH) on 11pl5 was also more common in the grade

IV gliomas (Additional file 5: Table S5 and Fig. 3b). Ap-
plying functional gene ontology analysis to genes on
these chromosome segments, the only enriched pathway
was nitrogen compound transport (Additional file 6:
Table S6). Both lower grade and grade IV IDH™" gli-
omas were enriched foralterations in the PI3K/AKT
pathway. However, only IDH™" grade IV gliomas were
enriched for alterations in pathways involving regulation
of actin cytoskeleton, RAS, and EGFR. These differences
suggest that RAS signaling and cytoskeletal abnormal-
ities may play a role in progression of IDH™" gliomas.

Increased genomic instability is observed in IDH™"
gliomas

We observed a mean number of gains and losses of 150
CNA/sample (range 11-1070) in all samples. Overall,
Grade IV tumors had higher CNA frequency than lower
grade tumors. Unexpectedly, the highest frequency of al-
terations was seen in IDH™"" grade IV gliomas. Grade IV
IDH™" gliomas had more than double th number of
CNA than any of the other three groups (p = 0.0078 by
ANOVA, with pairwise p-values <0.008 for all three
pairs, Fig. 4a). Although the absolute number of chromo-
some abnormalities can change based on analysis thresh-
old parameters and our analysis was designed to minimize
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confidence interval shown. b. Example of a chromosome from one of the glioma samples with chromothripsis. ¢. Bar graph of the frequency of
chromothripsis in each group of gliomas. d. Association of chromothripsis and p53 alterations in all glioma samples and stratified by grade
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undercalling, the differences between groups were not af-
fected by varying thresholds. These findings suggest that
increasing chromosome instability is a hallmark of the
progression of IDH™" lower grade gliomas into high
grade. Whether this chromosome instability is a cause or
effect of increasing grade cannot be determined from our
data.

We also examined the TCGA GBM and lower grade
glioma datasets for total number of copy number alter-
ations. Significantly more copy number alterations were
seen in both the IDH™" Grade IV (mean 132.1, median
105 per sample) and IDH™" Grade IV (mean 132.8, median

96.5 per sample) tumors compared to the lower grade
IDH™" (mean 63.04, median 53 per sample) and IDH™"
(mean 53.9, median 40 per sample) gliomas. However, due
to the small number of IDH™"* GBM with copy number
data (17), the power for comparing the number of CNA
between IDH™"* and IDH"* GBM was low. Moreover, un-
like our samples, the lower grade and grade IV samples in
the TCGA were run separately, so batch effects are
possible.

Given the subgroup differences in CNA frequency, we
examined the specific patterns of alterations across the
whole genome and looked within groups at the specific
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CNAs on chromosomes with a high number of alter-
ations. The term chromothripsis describes situations in
which there are a large number of chromosomal rear-
rangements over localized chromosomal regions [10,
38]. In our analysis, we used the definition of at least 10
switches between two copy-number states (gain and
loss) on at least one individual chromosome for a tumor
to be considered to have chromothripsis. An example of
a chromosome with chromothripsis is shown in Fig. 4b.
By this definition, 11 of our samples contained chromo-
thripsis. Chromothripsis was significantly more common
in IDH™" Grade IV tumors than IDH"* (p = 0.002) or
lower grade IDH™" (p = 0.05, Fig. 4c).

We hypothesized that loss of function of p53 would
predispose to chromothripsis because of the inability of
p53 deficient cells to undergo apoptosis in the face of
chromosome shattering. Indeed, gliomas with chromo-
some loss at the TP53 locus or LOH at the TP53 locus
were more likely to have chromothripsis than those with
no alteration of TP53 (Fig. 4d), although this relationship
was limited to Grade IV tumors.

The prognostic significance of chromothripsis is un-
known. In our cohort, chromothripsis was not prognostic.

Alterations in cancer associated genes reveal the
biological differences between molecular subtypes

To illustrate the similarities and differences between the
four subgroups of 1p/19q non-co-deleted gliomas, we
examined the pattern of alterations of three well-described
glioma associated genes. We used Venn diagrams to
visualize patterns of CNAs in the oncogene EGFR (7p11.2)
and the tumor suppressor genes CDKN2A (9p21.3) and
PTEN (10q23.31) (Although our data cannot determine
whether CNAs affecting these genes are functionally tar-
geting these genes or nearby ones, these are genes with
known functional significance in gliomas.). For this ana-
lysis, we only included CNAs that affected the whole gene,
(6 % of samples had losses within CDKN2A or PTEN and
11 % of samples had gains within EGFR that did not affect
the whole gene) (Fig. 5a).

Gain of EGFR and loss of PTEN and CDKN2A occur
together frequently in both IDH"" lower grade and grade
IV gliomas (all three occurring together in 53 % and
40 %, respectively), with no significant differences of
these alterations by grade. On the other hand, EGFR
gain is significantly rarer overall in IDH™" gliomas
(17 % grade II-III, 25 % grade IV) and CDKNZ2A loss is
slightly lower (39 % grade II-III, 42 % grade IV) com-
pared with IDH"'. Moreover, seeing all three alterations
is very rare in IDH™" gliomas, only occurring in 4 % re-
gardless of grade. We did observe significant differences
in PTEN loss associated with grade in IDH™* tumors
(17 % IDH™* grade II-1II and 46 % IDH™" grade IV
[p =0.025]). These findings suggest that loss of PTEN or
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genes near it on chromosome 10q may be a key and
unique factor associated with progression of IDH™" tu-
mors to grade IV.

To examine the functional significance of the chromo-
some alterations seen in the different groups, we exam-
ined a predetermined list of genes in pathways previously
shown to be altered and functionally important in gliomas,
including receptor tyrosine kinases (RTK), phosphatidyl-
inositol-3-kinase, NF-«xB, P53, and cell cycle regulators
(Fig. 5b). These genes were considered altered if they were
in an extended region identified by GISTIC analysis as
having a g-value <0.25. Although most gliomas show al-
terations in all of these pathways, the mechanism by
which the pathways are altered can differ. IDH*" gliomas
had significantly more chromosome alterations affecting
RTK signaling than IDH™"" gliomas. PI3K pathway activa-
tion also differed based on IDH status: upstream changes
such as PTEN deletion or AKT gain were more common
in IDH"" gliomas and MTOR gain was significantly less
common (p=2x107, 0.002, and 1x 107>, respectively).
Such differences could have implications for application of
multiple targeted treatments to these glioma subtypes.
Among cell cycle regulators, IDH"" gliomas were signifi-
cantly more likely to have CDK1 loss and less likely to
have cyclin A1 gene loss or cyclin D1 or E2 gene gain.

Prognostic factors

The strongest prognostic factors in the whole population
were IDH status and grade (Fig. 1c). In multivariate ana-
lysis, the other significant variables were loss of the es-
trogen receptor B (ESR2), gain of CDKNIC, and TP53
loss, each of which was a negative prognostic factor
(Additional file 7: Table S7). Given the biologic and clin-
ical differences between the four subgroups defined by
IDH status and grade, we sought to identify distinct
prognostic factors within each subgroup and within the
entire IDH™" and IDH" groups. Although univariate
analysis identified distinct copy number alterations in
each subgroup that were significantly associated with
survival in our cohort, none were significantly associated
with survival when we attempted to validate them using
433 GBM and 181 lower grade glioma samples from the
TCGA obtained via Nexus premier.

Discussion

We present one of the first comparative analyses of
CNAs among glioma subgroups defined by WHO grade
and IDH mutation status. Confirming prior observations,
we observe significant chromosomal differences between
IDH-mutant and IDH-wild type tumors. When analyzing
subgroups by grade and mutation status, we find few
significant copy number differences between IDH™
lower grade and IDH"" grade IV gliomas. These genomic
similarities support the concept that despite their histologic
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Fig. 5 a. Venn diagrams of the percent of tumors in each of the 1p/19g non-co-deleted glioma groups with gain of EGFR, PTEN loss, and/or
CDKN2A loss. Percents are given for intersecting regions. The diameter of each circle is proportional to the percent of tumors in each subgroup
with a CNA affecting the gene. b. Heatmap of known glioma-associated genes and pathways in each of the four 1p/19g non-co-deleted groups
of gliomas. Only chromosome abnormalities significant by GISTIC were included. Blue indicates gain and red indicates loss. The strength of the
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appearance, biologically these lower grade IDH"* tumors
are pre-glioblastomas with a median survival a mere
7 months longer than grade IV gliomas, with few long-term
survivors [24]. In contrast, among IDH™" tumors, cluster-
ing based on copy number demonstrates that lower grade
and grade IV gliomas with IDH mutations are distinct bio-
logic entities; they also have distinct prognosis. The pro-
gression of IDH™" gliomas from lower grade to grade IV
involves multiple CNAs, particularly on chromosome 10q,
affecting biologically relevant pathways including: activation
of PI3K signaling through loss of PTEN and gain of mTOR,
as well as activation of cell cycle signaling through gain of
CDK4, CDK®6, and cyclinE2. MGMT loss may play a role as
well, consistent with the resistance of MGMT unmethyla-
ted" gliomas to alkylating agents.

In comparison to IDH"* gliomas, IDH"" gliomas have
greater activation of receptor tyrosine kinase signaling
through EGFR gain, MET gain, and BRAF gain, in
addition to increased gains in cell cycle activators and
losses of cell cycle inhibitors compared to IDH™" gli-
omas. This is likely to be biologically relevant, as others
have shown that the number of CNAs in the receptor
tyrosine kinase pathway correlates with pathway activa-
tion measured by downstream kinase phosphorylation
[16]. Amplification of EGFR has been shown to separate
GBM into distinct clusters [8, 26, 2]. Although IDH mu-
tation status was not reported in these clustering papers,
alterations seen in the non-EGFR amplified group, such
as losses on chromosome 13, mirror those seen in our
IDH™"* glioblastomas. The lack of EGFR amplification in
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IDH™" glioblastoma was also seen in the TCGA samples
[4]. A similar pattern of chromosome gains and losses
distinguished primary and secondary glioblastoma, which
have a high rate of IDH mutations [22]. These results val-
idate our findings that growth factor receptor signaling,
particularly in the EGFR pathway, differs between IDH™""
and IDH"" gliomas.

We found an unexpectedly large number of intrachro-
mosomal breakpoints, also known as chromothripsis, in
our IDH™" GBM tumors. Upon closer inspection, we
observed that chromothripsis is more likely when TP53
is altered through deletion and/or LOH, and others have
found that astrocytes lacking p53 have more chromo-
some breaks [47] and medulloblastoma due to inherited
TP53 mutations have increased chromothripsis [32].
Different definitions of chromothripsis have been pro-
posed in the literature, and although many of our
samples meet the common definition of chromothrip-
sis, they do not all fit into every definition of chromo-
thripsis [38, 19]. Therefore, we cannot conclude
whether the massive intrachromosomal instability seen
in IDH™" gliomas in our samples occurs in one event
(“true” chromothripsis) or in sequential events over
time (severe chromosomal instability). Nevertheless,
our data support that IDH™"* high grade tumors con-
tain the highest number of alternating, intrachromoso-
mal breakpoints.

Our study strengths include the relatively large num-
ber of IDH™" GBM and IDH"' lower grade gliomas
relative to other data sets (including TCGA), allowing
us to better characterize these uncommon groups. In
addition, we have been able to use relatively novel, high-
resolution MIP technology to analyze archived FEPE tissue
with associated clinical variables and mature outcome data.
Weaknesses include the overall small size of the series,
which means that conclusions, particularly about between
group differences and within group prognostic factors,
must be taken as hypothesis-generating.

Conclusions

In conclusion, we have shown that IDH and grade define
four distinct groups of 1p/19q non-co-deleted gliomas
determined by functionally important CNAs and unique
prognostic factors. IDH"" lower grade gliomas and grade
IV gliomas are closely related and driven by common
and well known alterations including EGFR amplifica-
tion and PTEN deletion, while IDH™" lower grade gli-
omas remain functionally distinct from grade IV
gliomas. The transition of IDH™" lower grade gliomas
to grade IV gliomas involves loss of PTEN and dysregu-
lation of cell cycle regulators, in addition to an apparent
higher frequency of chromosomal instability and/or
chromothripsis.
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Additional files

Additional file 1: Table S1. Loci with copy number alterations with an
FDR <0.25 using the GISTIC algorithm in (A) IDH™ GBM, (B) IDH™"
Grade II-1II gliomas, (C) IDH"" GBM, and (D) IDH"* Grade II-IIl gliomas.
Columns give the percent of samples within each subgroup with allelic
imbalance, low level copy number gain, low level copy number loss, high
level copy number gain, and homozygoud deletion at each locus.

Additional file 2: Table S2. Loci with copy number alterations that are
significantly different between IDH™" and IDH"" gliomas, regardless of
grade, with FDR <0.25.

Additional file 3: Table S3. Loci with copy number alterations that are
significantly different between low and high grade IDH"" gliomas with
FDR <0.25.

Additional file 4: Table S4. Loci with copy number alterations that are
significantly different between the two clusters of IDH™" gliomas
identified by hierarchical clustering with FDR <0.25.

Additional file 5: Table S5. Loci with copy number alterations that are
significantly different between low and high grade IDH™" gliomas with
FDR <0.25.

Additional file 6: Table S6. Gene Ontology categories and pathways
enriched using the ToppGene algorithm for (A) IDH™" Grade II-Ill
gliomas, (B) IDH™* GBM, (C) IDH"* Grade ll-IIl gliomas, (D) IDH"" GBM, (E)
differences between IDH™" lower grade and high grade gliomas, and (F)
differences between IDH"" low and high grade gliomas.

Additional file 7: Table S7. Univariate and multivariate survival analysis

in the entire population and within the four subgroups of 1p/19q
non-co-deleted gliomas.
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