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Abstract 

Pick’s disease (PiD) is a subtype of the tauopathy form of frontotemporal lobar degeneration (FTLD‑tau) character‑
ized by intraneuronal 3R‑tau inclusions. PiD can underly various dementia syndromes, including primary progressive 
aphasia (PPA), characterized by an isolated and progressive impairment of language and left‑predominant atrophy, 
and behavioral variant frontotemporal dementia (bvFTD), characterized by progressive dysfunction in personal‑
ity and bilateral frontotemporal atrophy. In this study, we investigated the neocortical and hippocampal distribu‑
tions of Pick bodies in bvFTD and PPA to establish clinicopathologic concordance between PiD and the salience 
of the aphasic versus behavioral phenotype. Eighteen right‑handed cases with PiD as the primary pathologic diag‑
nosis were identified from the Northwestern University Alzheimer’s Disease Research Center brain bank (bvFTD, 
N = 9; PPA, N = 9). Paraffin‑embedded sections were stained immunohistochemically with AT8 to visualize Pick bod‑
ies, and unbiased stereological analysis was performed in up to six regions bilaterally [middle frontal gyrus (MFG), 
superior temporal gyrus (STG), inferior parietal lobule (IPL), anterior temporal lobe (ATL), dentate gyrus (DG) and CA1 
of the hippocampus], and unilateral occipital cortex (OCC). In bvFTD, peak neocortical densities of Pick bodies were 
in the MFG, while the ATL was the most affected in PPA. Both the IPL and STG had greater leftward pathology in PPA, 
with the latter reaching significance (p < 0.01). In bvFTD, Pick body densities were significantly right‑asymmetric 
in the STG (p < 0.05). Hippocampal burden was not clinicopathologically concordant, as both bvFTD and PPA cases 
demonstrated significant hippocampal pathology compared to neocortical densities (p < 0.0001). Inclusion‑to‑neuron 
analyses in a subset of PPA cases confirmed that neurons in the DG are disproportionately burdened with inclusions 
compared to neocortical areas. Overall, stereological quantitation suggests that the distribution of neocortical Pick 
body pathology is concordant with salient clinical features unique to PPA vs. bvFTD while raising intriguing questions 
about the selective vulnerability of the hippocampus to 3R‑tauopathies.
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Introduction
Frontotemporal lobar degeneration with tauopathy 
(FTLD-tau) is a neurodegenerative disease found at 
autopsy and is the second most common cause of demen-
tia under age 65 [53]. Much of the complexity in studying 
FTLD-related dementias is due in part to the phenom-
enon that the same pathology can be associated with 
different clinical dementia syndromes. For example, pri-
mary progressive aphasia (PPA) is a syndrome character-
ized by isolated and progressive impairment of language 
and focal atrophy of regions in the language dominant 
hemisphere [30, 33, 34, 51]. In contrast, behavioral vari-
ant frontotemporal dementia (bvFTD) is characterized 
by progressive dysfunction in personality and atrophy 
in bilateral frontal regions [1, 28, 48, 54]. Yet, both dis-
tinct clinical phenotypes can be associated with the same 
underlying pathology. In this study, we focus on PPA and 
bvFTD caused by the FTLD-tau subtype known as Pick’s 
disease [48].

Pick’s disease (PiD) is one of three major subtypes of 
FTLD-tau, first coined by Arnold Pick who observed 
patients with progressive behavior and/or language 
deficits and focal frontotemporal atrophy [24]. Those 
affected with PiD commonly display “knife-edge” frontal 
lobe as well as anterior temporal lobe atrophy on struc-
tural MRI and subsequently at autopsy [45, 62]. It is now 
understood that PiD is defined by the postmortem neu-
ropathology characterized by distinct, round cytoplasmic 
neuronal tau inclusions called Pick bodies [21, 57]. PiD 
is considered a 3R-tauopathy, as its pathologic inclusions 
consist almost exclusively of pathologic tau containing 
three microtubule-binding repeat domains [11]. Con-
versely, corticobasal degeneration (CBD) and progressive 
supranuclear palsy (PSP) are 4R-tauopathies, while neu-
rofibrillary tangles in Alzheimer’s disease (AD) consist of 
both 3R and 4R tau [7, 12, 16].

The goal of the present study was to investigate the neo-
cortical and hippocampal distributions of Pick bodies in 
PPA and bvFTD to establish clinicopathologic concord-
ance between PiD and the salience of the aphasic versus 
behavioral phenotype. Utilizing immunohistochemical 
techniques and an unbiased stereologic approach, we 
analyzed up to seven regions, six of which were acquired 
bilaterally, to closely investigate the relationship between 
anatomy, clinical syndrome, and regional and hemi-
spheric distributions of Pick bodies. Findings provide 
further evidence of the notion that dementia symptoms 
are related to localization of pathology, while also pre-
senting evidence of 3R tau selective vulnerability.

Materials and methods
Case characteristics
Eighteen right-handed cases with autopsy-confirmed PiD 
as the primary pathologic diagnosis were identified from 
the NIA-funded Alzheimer’s Disease Research Center 
Brain Bank housed within the Mesulam Center for Cog-
nitive Neurology and Alzheimer’s Disease at Northwest-
ern University’s Feinberg School of Medicine. Written 
informed consent was obtained from all participants 
who committed to brain donation. Nine cases carried 
an antemortem diagnosis of bvFTD and nine carried an 
antemortem diagnosis of PPA, and half the total cohort 
was female. All cases with a clinical diagnosis of PPA 
were co-enrolled in the Northwestern PPA program. In 
the bvFTD cohort, the mean age at symptom onset was 
58.44  years (SD = 7.86), and the mean age at death was 
69.11  years (SD = 7.52). The mean age at onset for the 
PPA cohort was 59.44  years (SD = 4.75), and the mean 
age at death was 69.44 years (SD = 4.1).

Across the total cohort, disease duration ranged from 
4 to 14 years (M = 10.33 years, SD = 3.14). The mean PMI 
was 17.5  h, and the mean brain weight was 1008.25  g. 
A diagnosis of bvFTD was based on the 2011 criteria of 
the International Behavioral Variant FTD Consortium 
[48]. The diagnosis of PPA was based on the criteria of 
Mesulam [32] and required a clinical history of progres-
sive language impairment unaccompanied by consequen-
tial decline in other cognitive domains within the initial 
stages of the disease [29, 35]. Further classification into 
PPA subtypes was based on retrospective chart review by 
a neurologist (MMM) guided by the criteria of Gorno-
Tempini et al.  [18] and Mesulam et al. [31]. Of the PPA 
cases, 6 were clinically diagnosed with the agrammatic 
variant and one with the semantic variant; one case was 
too severe at enrollment to classify, and another demon-
strated a “mixed” phenotype, defined by deficits in both 
grammar and verbal semantics [31]. One PPA case (Case 
14) had a substantially reduced disease duration due to 
a non-dementia-related death. At her last and final clini-
cal visit, her overall dementia severity was still very mild 
(global clinical dementia rating (CDR) = 0.5), and lan-
guage was mildly impaired (CDR language = 1). Fifteen 
cases had genotyping for apolipoprotein E (ApoE). Four 
cases had an ApoE ε4 allele, the strongest known genetic 
risk factor for amnestic Alzheimer’s dementia associated 
with AD [3, 8, 13] but not with PPA associated with AD 
[52, 58], and two cases had an ApoE ε2 allele, a proposed 
protective allele against AD [6, 49]. No cases had a known 
mutation associated with AD or FTLD. See Table  1 for 
individual case characteristics.
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Neuropathologic evaluation and histological preparation
Following autopsy, the cerebral hemispheres were sepa-
rated in the midsagittal plane, cut into 2- to 3-cm coro-
nal slabs, fixed in formalin or 4% paraformaldehyde for 
36  h, taken through sucrose gradients (10%–40%) for 
cryoprotection, and stored in 40% sucrose with 0.02% 
sodium azide at 4° C. Gross examination after autopsy 
showed severe atrophy in frontotemporal regions 
across all cases, with more severe parietal atrophy in 
PPA cases. The pathologic diagnosis of FTLD and spec-
ification of its variants was rendered by neuropatholo-
gists (EHB, QM, RJC, and MEF) using published 
consensus criteria of the Consortium for FTLD [4]. No 
cases showed greater than “low” Alzheimer’s Disease 
neuropathologic change (ADNC) according to criteria 
set by Hyman et. al (2012) and Montine et. al (2012) 
[20, 44], and those with co-morbid ADNC showed min-
imal neurofibrillary tangle pathology (i.e., Braak stage 
0 or 1). Furthermore, all cases showed Pick’s disease 
as the primary pathologic diagnosis, with no lesions of 
other tauopathies observed. For all cases, samples were 
taken from 5 regions bilaterally [middle frontal gyrus 
(MFG; BA 8–9), superior temporal gyrus (STG; BA 
22), inferior parietal lobule (IPL; BA 39–40), and den-
tate gyrus (DG) and CA1 regions of the posterior third 
of hippocampus complex] and unilateral left occipital 
cortex (OCC; BA 17). In PPA cases, additional bilateral 
samples were taken from the anterior temporal lobe 
(ATL; BA 38) as a part of standardized neuropathologic 
protocol for the Northwestern University PPA Pro-
gram. Regions of interest were embedded in paraffin 
and cut into 5 μm-thick sections. Sections were stained 
immunohistochemically with the AT8 antibody, which 
recognizes human tau phosphorylated at Ser202/205 
(mouse monoclonal; Invitrogen MN1020; 1/500), using 
the Avidin–Biotin Complex (ABC)-based method with 
streptavidin to visualize Pick bodies. Slides were devel-
oped manually using either amino ethyl carbazol (AEC) 
chromogen (NovaRed; Vector Laboratories SK4800), 
which gave tau pathology a red hue, or automatically 
using 3,3’-Diaminobenzidine (DAB) chromogen in a 
Leica Bond-Max Autostainer, which gave pathology 
a brown hue. There was no qualitative difference in 
pathologic tau immunopositivity and staining between 
chromogens or methods, and control slides were used 
during manual staining to ensure comparable immu-
nostaining between batches. A subset of PPA cases 
(Cases 10, 16, and 17) was histologically stained using 
1.0% cresyl violet to visualize neurons for counting.

Modified stereological quantitative analysis of Pick 
pathology
Modified stereological analysis was carried out on five 
adjacent sections employing the fractionator method 
and the StereoInvestigator software (MicroBrightField) 
to estimate the density of Pick bodies and, in a subset 
of cases, density of neurons. Similar to previously pub-
lished procedures [14, 25], five adjacent sections were 
used to quantify tau inclusions, and three adjacent sec-
tions for neurons. For each neocortical section, the 
crest of the gyrus was traced at 2.5 × from the cortical 
surface to the white matter, forming a horseshoe shape. 
The DG was traced by following the outer granule cell 
layer, and the CA1 was identified and traced using 
cellular and anatomical landmarks. The top and bot-
tom 1 µm of each section were set as guard height and 
dimensions of the counting frame were 100 × 100  µm, 
regardless of magnification. Inclusions were counted 
if they fell within the z-axis of the chosen dissector 
height of 3.0 µm. Counting frame rules were modified, 
where a pathological inclusion was counted if its area 
was at least 50% in the counting frame, regardless of if 
it touched the red or green counting frame perimeters. 
All parameters for analysis were tested and adjusted 
so that the coefficient of error was < 0.1. For each case, 
regions of interest were analyzed by a viewer blind to 
the clinical diagnosis, brain region and brain hemi-
sphere. Regions were analyzed at 63× for Pick bodies 
and at 40× for neurons. Pick bodies were distinguished 
based on defined inclusion edges of vesicular appear-
ance, intense AT8 immunohistochemical uptake, and 
contiguity to a nucleus. About 80 to 200 counting sites 
were analyzed per neocortical region. Stereological 
counts obtained were expressed as mean Pick body per 
cubic millimeter in each region, based on planimetric 
calculation of volume by the fractionator software.

Statistical analysis
A Fisher’s exact test was performed to compare ApoE 
E4 frequency between PPA and bvFTD groups. Welch’s 
t-tests compared mean PMI, education, age at death, 
age at onset, disease duration, and brain weight between 
bvFTD and PPA groups. Paired t-tests were used to com-
pare overall and regional Pick body densities between 
hemispheres within clinical groups. Welch’s t-tests were 
used to compare: (1) overall and regional Pick bodies 
between clinical phenotypes, (2) ratio of overall neo-
cortical to overall hippocampal densities between clini-
cal phenotypes, and (3) overall neocortical and overall 
hippocampal pathologic densities within clinical phe-
notypes. Inclusion-to-neuron ratios were calculated 
(density of inclusions/density of neurons) in a subset of 
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PPA cases, and paired t-tests were utilized to compare 
inclusion-to-neuron ratios in left MFG and granule cells 
from the left DG. Statistical analysis was completed 
using Prism 9 v.9.4.1 (Graphpad). Significance was set at 
p < 0.05.

Results
Clinical findings, demographics, and gross patterns 
of atrophy in PiD cases
The bvFTD and PPA groups did not differ significantly 
in PMI, education, age at death, age at onset, or disease 
duration. Mean brain weight of the bvFTD cohort was 
significantly lower than that of the PPA cohort (p < 0.05). 
There were no statistical differences in ApoE ε4 fre-
quency between clinical groups.

Regions including the hippocampal formation as well 
as frontal, temporal, parietal, and occipital cortices were 
examined grossly for atrophy and patterns of hemi-
spheric asymmetry. Five bvFTD cases showed bilateral 
gross atrophy. Cases 1 & 8 showed rightward asymme-
try of atrophy in frontotemporal regions, and Cases 2 & 
3 showed leftward asymmetry. Seven PPA cases showed 
leftward asymmetry of gross cortical atrophy. Case 14, 

who died early in disease course, showed mild bilateral 
temporal atrophy. Case 15 showed rightward asymmetry. 
Atrophy patterns appreciated at gross examination are 
detailed in Table 2.

Distribution and laminar patterns of pick bodies in bvFTD 
versus PPA
Total neocortical neuropathologic densities 
(MFG + STG + IPL) were combined and compared 
across hemispheres in bvFTD and PPA. In bvFTD, com-
bined neocortical neuropathologic burden was bilat-
eral (Fig.  1A). In PPA, combined densities in the left 
hemisphere were similar to left and right hemispheric 
densities in bvFTD; the right hemisphere in PPA was sig-
nificantly less affected by PiD compared to the language-
dominant left hemisphere (p < 0.01). Overall (left + right 
MFG, STG, IPL) neocortical neuropathologic burden 
was significantly greater in bvFTD than PPA (p < 0.01) 
(Fig.  1B). Highest neocortical densities of Pick bodies 
were found in ATL (M = 31,634, SD = 10,502) in PPA, 
whereas peak densities were evident in the MFG in 
bvFTD (M = 26,036, SD = 8719). There were higher inclu-
sion densities in the right STG in bvFTD (M = 27,537.25, 

Table 2 Gross atrophy

Semiquantitative grading: 0 absent; + Mild, ++Moderate; +++Severe

A Anterior; P Posterior; L Left; R Right; B Bilateral; STG Superior temporal gyrus

Case Hippocampus Frontal Temporal Parietal Occipital Caudate

1  +  +  + A + , P+  + 
(R > L)

 + 0 0

2  + L +  +  + , R +  +  +  +  + ,
P STG +  + 

 + 0  + 

3  +  +  + (L > R) L +  +  + , R +  + B +  +  + (except
P STG)

L focally +  +  + ,
R +  + 

L + , R0 B +  + 

4  +  +  +  +  +  +  +  + 
(Poles +  + +)

 +  +  + 

5  +  +  +  +  +  +  +  +  +  +  +  + 

6  +  +  +  +  +  +  +  +  +  + 0  + 

7  +  +  +  +  +  +  + 0 0

8  +  +  +  +  + (R > L)  +  +  + (R > L)  + 0  +  + 

9  +  +  +  +  +  +  +  + 0  + 

10 L +  + , R + ,
(A > P)

 +  +  + 
(L > R; A > P)

L +  +  + , R +  + 
(A > P)

L +  + , R + 0  +  +  + 

11  +  +  +  +  +  + (L > R)  +  +  + (L > R)  +  + (L > R) 0  +  +  + 

12  +  + (L > R)  +  +  + (L > R)  +  +  + (L > R)  + (L > R) 0  +  + 

13  +  +  +  +  +  + 
(knife‑edge on L)

L +  +  + , R +  + L +  +  + , R +  + 0  +  +  + 

14  + 0  +  + 
(Poles only)

0 0 0

15 A +  + , P +  + R + , L0  + 0  + 

16  +  + (L > R)  +  +  + (L > R)  +  +  + (L > R)  +  + (L > R) 0  +  + 

17 A+  +  + , P +  +  + Poles +  +  + (L > R) L +  + , R +  +  + 

18  +  +  +  +  +  + (L > R)  +  +  + (L > R)  +  + (L > R) 0  +  +  + 
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SD = 17,094.79) compared to right STG in PPA 
(M = 8123.19, SD = 6870.01), and in the right MFG in 
bvFTD (M = 29,157.41, SD = 7,827.25) compared to right 
MFG in PPA (M = 20,176.16, SD = 12,193.21); the former 
reached significance (p < 0.01; p = 0.08, respectively).

Case 11 was the sole case with a clinical diagnosis of 
the semantic variant of PPA. Distribution of Pick bodies 
closely followed PPA cohort trends, where bilateral ATL 
was the most affected neocortical region (M = 29,783.86), 
and bilateral DG was the region with the most abun-
dant Pick bodies (M = 56,738.8). MFG was the next most 
affected neocortical region in this case, with the left hem-
isphere more affected than right (left MFG = 28,720.86 
inclusions per  mm3; right MFG = 20,598.53 inclusions 
per  mm3).

In all cases, as expected, the occipital cortex showed 
extremely sparse to no pathology in either group. See 
Fig. 2 for all neocortical stereologic densities.

Pick body distribution across laminar layers was dif-
ficult to discern given immense neurodegeneration and 
resulting spongiotic tissue. Qualitative analysis by a neu-
ropathologist (RJC) noted Pick body inclusions present 
in superficial layers II and III and deep layers V and VI. 
Relative absence of Pick bodies in layer IV was a unify-
ing laminar feature across phenotypes. In regions with 
lower PiD densities, superficial layers were more popu-
lated with Pick bodies, with layer II mildly more affected 

(Additional file 1: Fig. S1). In more affected regions, the 
layer II was devastated with severe statis spongiosis.

Hemispheric asymmetry of neocortical Pick pathology 
in PPA compared to bvFTD
Concordant with the aphasic phenotype, left neocorti-
cal areas in PPA had significantly greater pathologic bur-
den than right (p < 0.05) (see Fig.  1A). In PPA, the STG 
showed significant asymmetric pathologic burden (L > R, 
p < 0.01) (Fig. 2). IPL and MFG was also leftward asym-
metric in PPA, though this did not reach significance. 
Interestingly, the ATL showed slight rightward predomi-
nance. Neocortical distributions of Pick bodies in bvFTD 
were generally symmetric except for the STG, which 
showed significant rightward asymmetry (p < 0.05). The 
ratio of right to left densities were also calculated for neo-
cortical regions in both groups, where ratios > 1 indicated 
more pathology in the right hemisphere, and ratios < 1 
indicated greater leftward pathology. Ratios were then 
transformed logarithmically, where values > 0 indicated 
more rightward pathology and values < 0 indicated more 
leftward pathology. Figure 3 shows logarithmically trans-
formed ratio values for each case. According to logarith-
mically transformed ratios, the direction of asymmetry in 
STG was significantly different between PPA and bvFTD 
(p < 0.001); in PPA, STG pathology was leftward predomi-
nant (M = -0.39, SD = 0.28), while in bvFTD cases it was 

Fig. 1 Bilateral and mean total (L + R) neocortical densities of Pick bodies in bvFTD and PPA. Bars represent mean density per cubic millimeter 
of Pick bodies in neocortical regions in bvFTD (N = 9) and PPA cases (N = 9). Neocortical regions include bilateral middle frontal, superior temporal, 
and inferior parietal gyri. Error bars represent standard errors of mean (SEM). A Bar graphs demonstrate hemispheric differences in mean neocortical 
density of Pick bodies, highlighting that right hemispheric neocortex in PPA has significantly fewer Pick bodies than the left hemisphere (p < 0.01). 
B Bar graphs show the mean overall (L + R) cortical regions in bvFTD vs PPA with error bars representing SEMs. Across the three neocortical 
regions, bvFTD has significantly greater overall mean density of PiD pathology (M = 25,240.24, SD = 11,431.51) compared to PPA (M = 20,260.76, 
SD = 11,816.51) (p < 0.01), driven by the leftward asymmetry seen in PPA, as shown in A. **p < 0.01
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Fig. 2 Neocortical distribution of Pick bodies in bvFTD vs PPA. Height of bars represent mean density per cubic millimeter of Pick bodies 
in neocortical regions in bvFTD (N = 9) and PPA (N = 9) cases. Error bars represent standard errors of mean (SEM). Pick body density was highest 
in MFG in bvFTD and ATL in PPA, and OCC showed no Pick bodies in bvFTD and PPA. bvFTD displayed generally bilateral distribution of PiD 
pathology, except for STG which showed rightward asymmetry (p < 0.05). In PPA, regions were generally leftward asymmetric, which reached 
significance in STG (p < 0.01). ATL showed slight rightward predilection in PPA. MFG = Middle frontal gyrus; STG = Superior temporal gyrus; 
IPL = Inferior parietal lobule; ATL = Anterior temporal lobe; OCC = Occipital cortex. *p < 0.05; **p < 0.01

Fig. 3 Laterality of Pick bodies in Right/Left Neocortex. A Ratios of Pick body density counts per millimeter cubed in individual right/left 
neocortical regions were transformed logarithmically (base 10) to illustrate hemispheric differences in PiD pathology in bvFTD (N = 9) and PPA 
(N = 9). In STG, right‑to‑left ratio was significantly different between PPA, which showed significant leftward asymmetry, and bvFTD, which showed 
slight rightward asymmetry (p < 0.001). The IPL ratio for Case 14 was excluded because the right IPL showed no pathology, so the right/left ratio 
equaled zero and thus could not be logarithmically transformed. The MFG ratio for Case 15 was excluded as an outlier (M ±  ≥ 2 SD). MFG = Middle 
frontal gyrus; STG = Superior temporal gyrus; IPL = inferior parietal lobule; R = Right; L = Left. ***p < 0.001. B Opposite laterality of Pick bodies in STG 
of PPA vs bvFTD. Photomicrographs (i) & (ii) were obtained from Case 5, an 82‑year‑old female with a 12‑year history of bvFTD and (iii) and (iv) 
were obtained from Case 12, a 65‑year‑old male with a 12‑year history of PPA‑G; images highlight significant leftward asymmetry in PiD in STG, 
while bvFTD cases showed slight rightward predominance. Brown appearance in i and ii are due to DAB, and red appearance in (iii) and (iv) are 
due to Vector NovaRed substrate. Scale bar = 100 µm in (iv), and also applies to (i–iii) 
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more rightward (M = 0.14, SD = 0.19). In PPA, MFG was 
slightly leftward-predominant (M = -0.10, SD = 0.22) 
while MFG was generally bilateral in bvFTD (M = 0.03, 
SD = 0.14). In IPL, both bvFTD (M = − 0.05, SD = 0.14) 
and PPA (M = − 0.1, SD = 0.28) cases generally showed 
leftward predominance. The significant difference in STG 
between the two clinical groups was detectable through 
qualitative microscopical examination (Fig. 3B).

Symmetric hippocampal predominance of Pick pathology 
regardless of clinical phenotype
In both bvFTD and PPA cases, a very high density of 
pathology was found in the dentate gyrus (DG) and CA1 
regions of the hippocampus. No hemispheric differences 
in DG and CA1 densities were found (Fig. 4A). In both 
the bvFTD and PPA groups, significantly greater pathol-
ogy was measured in the hippocampus (DG + CA1) 
than the entire neocortex combined (MFG + STG + IPL) 
(p < 0.0001). There was no significant difference in ratio of 
neocortical to hippocampal burden between phenotypes 
(Fig. 4B and C). Even Case 14, who died at an early dis-
ease stage, had relatively high density of Pick bodies pre-
sent in the DG (~ 2000 inclusions per  mm3).

In a subset of PPA cases (Cases 10, 16, and 17), neurons 
were quantified in the left MFG, and an inclusion-to-
neuron ratio was calculated to estimate the relationship 
between presence of inclusions and neuronal packing 
density (Fig.  5). Left MFG was quantified due to severe 
pathologic burden with relatively less severe neuronal 
loss (atrophy). Inclusion-to-neuron ratio for the granule 
cells of the left DG in the same cases was previously col-
lected in Kawles et al. [25]. On average, 9.8% of neurons 
in left MFG contained a Pick body. In contrast, about 
66.9% of granule cells in these three cases contained an 
inclusion. This difference was statistically significant 
(p < 0.05) (Additional file 1: Fig. S2).

Discussion
Until recently, Pick’s disease was considered a relatively 
uniform clinicopathologic entity that described a fron-
totemporal lobar degeneration with pathologic 3R-tau-
positive intraneuronal inclusions known as Pick bodies. 
In actuality, the pathologic diagnosis of PiD can be found 
in two separate, distinct clinical phenotypes: the apha-
sic dementia of PPA and the comportmental demen-
tia of bvFTD. The present study aimed to distinguish 
regional and hemispheric distributions of Pick bodies in a 

Fig. 4 Abundant hippocampal pathologic burden is a universal substrate of Pick’s Disease (PiD). A Height of bars represent mean density per cubic 
millimeter of Pick bodies in anatomic regions in bvFTD (N = 9) and PPA cases (N = 9). Error bars represent standard errors of mean (SEM). Dotted line 
indicates the highest mean neocortical Pick body density from Fig. 2 for the PPA group, which was right ATL at 34,473 inclusions per  mm3. Dashed 
line indicates the highest mean neocortical Pick body density from Fig. 2 for the bvFTD group, which was right MFG at 29,157 inclusions per  mm3. 
bvFTD cases had slightly greater mean DG and CA1 densities compared to PPA cases, which did not reach significance. Burden was symmetric 
for both phenotypes. Photomicrographs (B & C) illustrate the substantial neuropathologic burden throughout the entire hippocampus in both the 
behavioral and aphasic phenotypes; B was obtained from Case 5, an 82‑year‑old female with a 12‑year history of bvFTD and C was obtained 
from Case 12, a 65‑year‑old male with a 12‑year history of PPA‑G. Inset highlights the granule cells of the dentate gyrus, which were most affected 
by Pick bodies in both bvFTD and PPA cohorts. Images were taken at 1 × magnification, and insets were taken at 20X. DG = Dentate gyrus; 
CA1 = Cornu Ammonis field 1
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well-characterized cohort of PPA- and bvFTD-PiD indi-
viduals. Pick bodies showed a leftward predilection in 
the neocortex in PPA cases concordant with the aphasic 
phenotype, while bvFTD cases were  on average bilater-
ally affected. Differential vulnerability of the hemispheres 
in PPA versus bvFTD was particularly pronounced in the 
STG, where pathology was significantly left-predominant 
in PPA and right-predominant in bvFTD. Lastly, the 
hippocampus—primarily the dentate subregion—was 
uniquely and universally affected with a high burden of 
Pick bodies in all cases regardless of clinical phenotype.

The left-lateralization of atrophy in PPA is a core bio-
logic feature of the aphasic phenotype [15, 34, 38, 41]. 
Asymmetric pathologic inclusion distribution has been 
shown in PPA associated with TDP-43 [26, 27] and in 
PPA associated with ADNC [14]. A seminal study found 
that distribution of AD pathology differed between PPA 
and dementia of the Alzheimer’s type, where PPA due to 
AD showed pronounced leftward asymmetry of AD neu-
rofibrillary tangle pathology compared to symmetric dis-
tribution in the amnestic phenotype. This study was one 
of the first to demonstrate clinicopathologic concordance 
between distribution of the same pathologic entity in dif-
ferent clinical syndromes [14]. The current study is also 
the first to demonstrate this concordance in PPA due an 
FTLD-tauopathy using stereologic analysis. Our findings 
further showed symmetric overall neocortical predomi-
nance of Pick bodies in bvFTD, a finding that has been 
well-documented in both imaging and histologic analyses 
[22, 47, 60]. Overall left neocortical Pick body densities 

in PPA are comparable to the overall left and right hemi-
sphere Pick body densities in bvFTD, consistent with 
previous evidence of PPA as a disease of the language 
dominant hemisphere and bvFTD as a bilateral disease. 
Surprisingly, findings reveal that the observed asymmetry 
in PPA-PiD is not characterized by increased left hemi-
sphere pathology, but rather decreased right hemispheric 
pathology compared to bvFTD-PiD. Such results provide 
insight into the progression of PiD in these phenotypes, 
where the right hemisphere appears relatively spared in 
PPA-PiD until later disease stages, while PiD underlying 
bvFTD may engender and spread bilaterally.

The STG emerged as an interesting region of differ-
ential vulnerability, whereby PPA cases showed signifi-
cant left-predominant pathology while bvFTD patients 
showed significant right-sided predominance. The left 
STG is a well-established component of the human lan-
guage network, though its exact function is still debated. 
The left STG is classically associated with Wernicke’s 
area, which was first characterized as a site of language 
comprehension based on lesion anatomy in stroke 
patients [50, 59]. However, neurodegenerative research 
reveals that comprehension deficits can arise from a con-
stellation of cortical atrophy sites in addition to the clas-
sic Wernicke’s area/left STG [2, 10, 40, 46]. Several PPA 
studies have instead found the anterior and posterior 
segments of the left STG to underly separate and distinct 
functions that correlate with different language deficits 
[39, 61]. The anterior temporal lobe, which includes the 
anterior STG, is found to assist with functions such as 

Fig. 5 Pick body packing density in hippocampus versus neocortex. A and B show density of tau pathology staining using immunohistochemistry 
with AT8 antibody in relation to neuronal density. A illustrates the high degree of pathology in the dentate gyrus (DG) of the hippocampus, which 
also holds a high density of neurons, in Case 13, a 75‑year‑old male with a 9‑year history of PPA. B shows relative density of tau pathology in the left 
middle frontal gyrus (MFG), a neocortical region with relatively abundant Pick disease pathology, in Case 18, a 71‑year‑old female with a 14‑year 
history of PPA. Photographs were taken at the same magnification. Inclusion‑to‑neuron analyses in a subset of cases show that despite differences 
in neuronal packing density, hippocampal cells, particularly granule cells in the DG, contain significantly more inclusions per neuron (p < 0.05). Bar 
indicates 100 µm
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word comprehension and object naming, the proposed 
functions of Wernicke’s area [9, 19, 36, 42]. Conversely, 
the posterior STG supports the phonological loop, which 
aids in word repetition, sentence comprehension, and the 
storage of auditory speech input in working memory for 
future articulation [17, 39, 55]. The agrammatic pheno-
type more closely aligns with posterior STG impairment, 
which correlates with our pathologic findings. It is impor-
tant to note that while a minority of cases show moderate 
to frequent neuritic plaques, this pathologic entity likely 
does not contribute to the aphasic or behavioral pheno-
type [14]. Though the functional modularity of the right 
temporal lobe is less understood, it is generally responsi-
ble for auditory and emotional processing [5, 43, 63]. In 
FTD cohorts, right-predominant temporal lobe atrophy 
is most often associated with severe comportment and 
personality changes [23, 56]. Right-asymmetric tempo-
ral PiD pathology in bvFTD is therefore concordant with 
observed behavioral symptoms. However, bvFTD-PiD 
shows peak atrophy patterns in bilateral prefrontal and 
anterior temporal cortices; therefore, PiD pathology in 
right STG may serve as a neighborhood marker for more 
severe burden in anterior regions.

Despite relative sparing of memory functioning in the 
behavioral and aphasic phenotypes, we found the hip-
pocampus to be greatly affected in both bvFTD- and 
PPA-PiD. The selective vulnerability of the granule cells 
of the dentate gyrus in PiD has previously been reported 
[11, 12, 21, 25]. A recent study by Mesulam et al. (2021) 
demonstrated that PPA patients with underlying AD 
neuropathology show preserved memory function-
ing despite hippocampo-entorhinal postmortem neu-
ropathologic burden that is comparable to those with 
amnestic dementia due to AD [37]. The finding that DG 
and CA1 pathology is significantly greater than over-
all neocortical pathology in both diseases is striking. In 
a recent study, our group found that, on average, about 
60% of dentate granule cells contained a Pick body [25]. 
Yet despite intense hippocampal PiD pathologic bur-
den, PPA and bvFTD patients show relative sparing of 
memory functioning. One variable that was thought to 
account for increased Pick body density in the hippocam-
pus is higher packing density of granule cells in the DG 
and, to a lesser extent, pyramidal cells in the CA1, com-
pared with the packing density of neocortical neurons. 
However, when we compared the inclusion-to-neuron 
ratios of granule cells to neurons in the left MFG in three 
PPA cases, we found that DG granule cells still showed 
significantly greater burden of PiD. Further, the average 
inclusion-to-neuron ratio from the three chosen cases 
(66.9%) aligns with previous published findings of 60% 
[25]. Hippocampal cells thus appear to be resilient to 

potential deleterious effects of Pick-related tau accumula-
tion. One possible explanation for this resilience is that 
while the Pick body may form early in disease course, 
their presence may not necessarily lead to neurodegen-
eration; indeed, our group has shown relative preserva-
tion of granule cells in the DG in both PiD and TDP-43 
proteinopathies, despite pathologic accumulation [25, 
26]. Another explanation is that despite early arrival to 
the dentate gyrus, PiD may progress at a slower rate in 
the hippocampus compared to neocortex, leading to 
preserved memory until later disease stages. Neverthe-
less, we found the DG showed at least 3-times more Pick 
bodies than neocortical regions in both bvFTD and PPA. 
Results suggest the hippocampus is vulnerable to Pick 
body pathologic accumulation, regardless of phenotype, 
but this vulnerability is not  necessarily associated with 
expected impairments in memory domains.

Despite  a unique clinical presentation  of semantic 
impairments, Case 11 followed similar patterns of patho-
logic distribution compared to the other PPA cases with 
agrammatic presentations. There was one notable excep-
tion in regional vulnerability; the semantic PPA case 
was more heavily affected by Pick body pathology in the 
MFG whereas the agrammatic cases showed greater STG 
involvement. While differences between PiD causing 
agrammatic versus semantic deficits cannot be extrapo-
lated from one case, comprehensive analyses can offer 
clues regarding relative spread and associated cognitive 
dysfunction.

The present study contains one of the largest cohorts 
of autopsy confirmed PiD leading to two disparate clini-
cal phenotypes. Stereological analysis provided rigorous 
quantitative measures of inclusion density that allow for 
reliable comparison of pathologic density between a large 
host of regions. Limitations include small sample size 
and lack of ATL data in the bvFTD group and neuronal 
density data from all cases. Given severe degeneration of 
tissue, neuronal density data would illuminate whether 
lower pathologic inclusion density correlates with lower 
neuronal number, implying inclusions are cleared as 
neurons are lost [26]. Lastly, our modified stereologic 
methodology analyzes adjacent 5 µm sections; this meth-
odological approach may result in overestimation of 
inclusion densities. Subsequent analyses will include ste-
reological quantification of subcortical regions in PiD as 
well as collection of similar data in 4R-FTLD-tauopathies, 
corticobasal degeneration and progressive supranuclear 
palsy, to determine shared versus unique neuropatho-
logic signatures of 3R and 4R tauopathies. Additional 
analyses are also needed to understand the contributions 
of neuroinflammatory, synaptic, and genomic hallmarks 
that may lead to distinct clinical phenotypes within the 
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same pathology. Together, these studies may determine 
the individual features that create the complex clinico-
pathologic picture of frontotemporal dementias.
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