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Abstract 

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenera-
tive diseases such as Alzheimer’s, multiple sclerosis, and Parkinson’s disease. Within the eye, excitotoxicity is thought 
to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic 
nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated 
the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep 
learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult 
Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images 
in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learn-
ing-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time 
point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that reti-
nal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear 
layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA 
injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the patho-
logical cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer 
thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent 
normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate 
the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is war-
ranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner 
plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and lon-
gitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.
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Introduction
The neurotransmitter glutamate serves as a major 
excitatory neurotransmitter for sensory transmis-
sion in the retina. Among the glutamate receptors, the 
N-methyl-D-aspartate (NMDA) receptor is the primary 
receptor involved in calcium influx into the neurons 
upon binding [1, 2]. In the setting of increased extra-
cellular glutamate concentrations in neurodegenerative 
diseases such as Alzheimer’s, multiple sclerosis, and 
Parkinson’s disease, the excessive activation of NMDA 
receptors leads to neuronal cell death via cytochrome 
c, nitric oxide, p38 mitogen-activated protein kinase, 
and other pathways [3, 4]. Similarly, excitotoxicity is an 
important mechanism identified in ocular disease pro-
cesses including glaucoma, diabetic retinopathy, retinal 
ischemia, and optic nerve injury [3]. Previous ex  vivo 
and clinical studies have shown that overstimulation 
of the NMDA receptors leads to excitotoxic retinal 
injury that impairs retinal morphology and visual func-
tion [5–7]. In the inner retina, earlier studies showed 
the susceptibility of the retinal ganglion cells (RGCs) 
to NMDA-induced excitotoxicity [1, 3, 4]. However, 
its vulnerability is highly selective and dependent on 
distinctive RGC cell types [4, 8]. The RGC degenera-
tion can be differentiated at the subcellular level among 
dendrites, somas, axons, and synapses [4]. The gluta-
mate receptors are also preferentially concentrated in 
the inner and outer plexiform layers, which hints at 
the early involvement of retinal injury beyond the gan-
glion cell layer (GCL). Recent cross-sectional studies 
have revealed neurotoxicity-induced alternations in the 
retinal nerve fiber layer (RNFL), inner plexiform layer 
(IPL), and inner nuclear layer (INL) in both glaucoma 
patients [9–11] and glaucoma animal models [12]. 
However, little is known about their longitudinal patho-
logical profiles across multiple retinal layers after neu-
rotoxicity influx. Since damage to the central nervous 
system including the retina remains irreversible, under-
standing the neuropathological cascades after excito-
toxic retinal injury is important for improving disease 
monitoring and unveiling potential targets for earlier 
and more precise intervention to slow down or halt dis-
ease progression. In this study, we aim to address this 
knowledge gap by investigating the longitudinal effects 
of excitotoxic retinal injury on degenerative events 
in different retinal layers using an in  vivo experimen-
tal rat model. We hypothesize that NMDA-induced 

excitotoxicity leads to distinct and dynamic patterns of 
neurodegeneration across retinal layers.

Changes in retinal layer thickness have been used 
as a surrogate biomarker to reflect excitotoxic retinal 
injury in various histological animal studies ex  vivo. 
However, histology suffers from tissue shrinkage dur-
ing destructive processing and is prone to variability 
when using different samples to evaluate pathological 
changes across time. Optical coherence tomography 
(OCT) offers non-invasive, high-resolution 3D volu-
metric representations of the anatomical structure in 
the neurosensory retina. This allows tracking of the 
retinal thicknesses in various clinical ocular conditions 
in  vivo, including glaucoma and diabetic retinopathy 
[13–15]. OCT has also been used for in vivo evaluation 
of total retinal thickness changes upon excitotoxic reti-
nal injury in preclinical animal models [16]. The thick-
ness of the ganglion cell complex combining the RNFL, 
GCL, and IPL has been proposed as a potential OCT 
imaging biomarker of glaucomatous degeneration in 
the context of disease progression [14, 17–19]. How-
ever, how these individual layers change over the course 
of the disease has not been well characterized, partly 
because of the difficulties in separating between these 
layers reliably, in particular the GCL and IPL. Accurate 
retinal sublayer thickness estimation requires unbiased 
whole-volume segmentation of multiple retinal layers. 
Conventional parameterized automatic retinal layer 
segmentation approaches such as GraphCut-based 
methods [20, 21] require extensive parameter tuning, 
suffer from long and memory-intensive processing 
time, and are sensitive to noise and local intensity shift. 
In contrast, recent advancements in deep learning-
based automatic segmentation enable more efficient, 
accurate, and robust segmentation [22–26]. To this end, 
we have developed a deep learning-based retinal layer 
segmentation framework that has undergone extensive 
validation on human retinal OCT data across multi-
ple devices and clinical conditions [27–29]. On the 
other hand, there are limited preclinical applications of 
deep learning-based retinal layer segmentation frame-
works available for non-human studies, mainly due to 
the heterogeneity in retinal morphology across differ-
ent species and strains, variability across OCT imag-
ing systems, limited samples for training from existing 
individual studies, and the labor-intensive processes 
to generate high-quality ground truth for training 
deep learning models [30]. Here, we propose to refine 
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our deep learning-assisted retinal layer segmenta-
tion framework for clinical studies and implement the 
integration of weakly supervised transfer learning [27] 
based domain adaptation [29] and pseudo-labeling [31] 
approaches into our analysis pipeline to facilitate pre-
clinical, longitudinal multi-layer retinal thickness esti-
mation in our experimental rat model for this project.

Materials and methods
Experimental animal modeling and data acquisition
Animal preparation for excitotoxic retinal injury
A total of 9 adult Long Evans rats were included in this 
study. Excitotoxic retinal injury was induced through a 
single intravitreal injection of NMDA solution into the 
right eye. The contralateral left eye did not receive any 
injection and served as an internal control. For intra-
vitreal injection, the animals were anesthetized with an 
intraperitoneal injection of ketamine and xylazine cock-
tail at the dose of 80 mg/kg and 8 mg/kg respectively. The 
right eye was prepared aseptically using 5% povidone 
iodine ophthalmic solution and desensitization with 0.5% 
topical proparacaine hydrochloride ophthalmic solution. 
Excitotoxic retinal injury was induced through a single 
2 µL intravitreal injection of 150 nmol NMDA dissolved 
in 0.9% saline solution using a 5 µL Hamilton syringe 
and a 31-gauge RN needle. One drop of 0.3% ciprofloxa-
cin ophthalmic antibiotic solution was applied after the 
procedure.

Retinal imaging through OCT
The spectral-domain OCT (Bioptigen, Inc., Research 
Triangle Park, NC, USA) was used to image the 
1.6 × 1.6 × 1.64  mm3 volume along the B-scan 
(width = 400 pixel), C-scan (depth = 400 pixel), and 
A-scan (height = 1024 pixel) directions centered on the 

optic nerve head for both eyes before (day 0) and at 3, 7, 
and 28 days after unilateral intravitreal NMDA injection. 
Prior to OCT imaging, the rats were anesthetized with an 
intraperitoneal injection of ketamine and xylazine. Tropi-
camide ophthalmic solution (1%) was used to dilate the 
pupil. Eye drops containing sodium carboxymethylcellu-
lose were applied to neutralize the corneal curvature and 
keep the cornea hydrated during retinal imaging [32].

OCT image processing and analysis pipeline
This section describes the end-to-end OCT image pro-
cessing and analysis pipeline that we developed for meas-
uring the longitudinal retinal layer changes in preclinical 
rodent experiments. Figure  1 shows the schematic dia-
gram of our deep learning-assisted retinal layer seg-
mentation and thickness estimation framework. Specific 
procedures are described as follows:

Preprocessing
Axial motion correction The axial motion during image 
acquisition was corrected by registering each pair of 
adjacent B-scans and minimizing the cross-correlation 
(Fig. 2C, D). A polynomial curve fitting was included in 
the equation to preserve both the natural curvature of the 
retina and the scanning angle during acquisition [13]. The 
motion-corrected OCT images were fed into the next step 
for 3D noise reduction for visualization and manual labe-
ling.

Speckle noise reduction The speckle noise of the OCT 
signals was reduced using the edge-preserving denoise 
algorithm via 3D bounded-variation smoothing [13] to 
provide better visualizations of the raw OCT images with 
higher signal-to-noise ratio (SNR) and contrast-to-noise 
ratio (CNR) (Fig.  2E, F). Bounded-variation smoothing 

Fig. 1 Schematic diagram of the end-to-end processing pipeline for the OCT-based automatic layer segmentation and layer-specific thickness 
estimation framework
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[33, 34] can assist manual raters in identifying retinal 
boundaries accurately and generating layer segmentation 
as ground truth labels. The original raw OCT data and 
the manually delineated and curated retinal layer segmen-
tation labels were used to train the deep learning-based 
auto-segmentation algorithm without speckle denoising.

Deep learning‑assisted retinal layer segmentation
To investigate how the injured retinal layers progressed 
with NMDA-induced excitotoxicity, we used supervised 
deep learning-assisted retinal layer segmentation on the 
retinal OCT data. The retinal layers were first manually 
segmented on each 2D B-scan of two independent OCT 
volumes acquired from healthy rat eyes in order to serve 
as the initial training data for automatic segmentation. A 
total of ten retinal layers were manually segmented, from 
the combined inner limiting membrane and retinal nerve 
fiber layer (ILM-RNFL), to the GCL, IPL, INL, outer plex-
iform layer (OPL), outer nuclear layer (ONL), external 
limiting membrane (ELM), photoreceptor layer (PRL), 
retinal pigment epithelium (RPE), and Bruch’s membrane 
(BM). Automatic retinal layer segmentation was achieved 

using the LF-UNet [27, 28], which is an anatomical-aware 
cascaded deep learning-based retinal OCT segmenta-
tion framework that has been validated on human retinal 
OCT data. In order to improve the efficiency and gener-
alizability of the LF-UNet segmentation framework when 
training with a small, labeled dataset, two techniques 
were applied: (1) composited transfer learning [27] based 
domain adaptation [35], and (2) pseudo-labeling [31].

Firstly, optimized model parameter initialization and 
fast convergence were achieved through transfer learning 
and domain adaptation. Among the two OCT volumes 
with ground truth manual segmentation, B-scans from 
one OCT volume were used as training data, and B-scans 
from the other volume were regarded as the validation 
set. Transfer learning was used to initialize the parameter 
of all the feature extraction layers in the neural network 
of the LF-UNet deep learning model, significantly reduc-
ing the need for training data. These model parameters 
were pre-trained using a segment task on the human 
retinal OCT data [27]. The last segmentation layer is a 
fully connected pixel-wise classification layer, and the 
model parameters in the convolutional layers before the 

Fig. 2 Representative stepwise results of the preprocessing pipeline in OCT. (Top) C-scan view, or slow-scan view across all B-scans in the volume; 
(Bottom) En-face view. A, B Raw retinal OCT volume; C, D motion-corrected volume along the axial direction; E, F speckle noise-reduced volume 
after the bounded-variation smoothing step
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last segmentation layer were preserved and frozen. The 
model parameters in the last segmentation layer were 
then updated during the initial rounds of training epochs 
to transfer the parameters to the retinal layers of the rat 
OCT data. After initial convergence, the model param-
eters in the remaining convolutional layer were then 
unfrozen and updated to adapt to the image domain of 
our rat OCT data. Data augmentation was implemented 
to increase the model’s capability to capture a larger 
range of anatomical variations. This included random 
translations of pixels between the range of 0–20 pixels 
along both axial and lateral directions, random rotations 
of angle between 0 and 30 degrees, random crop and 
zoom for up to 25%, and random flip with 50% possibil-
ity along the lateral direction (i.e. with vertical flip only to 
reflect the nature of retinal anatomy).

A pseudo-labeling approach was then applied to fur-
ther improve the segmentation accuracy and generaliz-
ability of the model with additional unlabeled OCT data. 

Initially, a total of five out of nine OCT volumes that were 
acquired at baseline (i.e. day 0 before intravitreal injec-
tion) were automatically segmented using the fine-tuned 
LF-UNet segmentation model. The automatic segmenta-
tion results were then combined with the two manually 
segmented OCT volumes as the intermediate training 
data containing seven volumes with pseudo-ground truth 
labels. These intermediate training data then underwent 
a second round of training. The final trained model was 
applied to all the axial motion-corrected longitudinal 
OCT volumes (Fig. 3).

Retinal thickness measurements
The layer-specific thickness map was calculated for each 
retinal scan on the axial motion-corrected OCT volumes 
without speckle denoising. Firstly, the resultant retinal 
layer segmentation in each OCT volume was converted 
from the pixel-wise dense label representation to the sur-
face maps of retinal boundaries. The surface level at each 

Fig. 3 Representative images of automatic retinal layer segmentation from the control eye that did not receive any injection (top two rows) 
and the experimental eye that received intravitreal NMDA injection (bottom two rows). For each retinal OCT scan, the following ten layers were 
segmented and measured: combined inner limiting membrane and retinal nerve fiber layer (ILM-RNFL), ganglion cell layer (GCL), inner plexiform 
layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), external limiting membrane (ELM), photoreceptor 
layer (PRL), retinal pigment epithelium (RPE), and Bruch’s membrane (BM). The choroid is also labeled underneath BM. Scale bar = 100 μm. The 
auto-segmentation model was able to follow the blood vessel boundaries in the RNFL layer (white arrows) while avoiding the projection artifacts 
in the outer retinal layers (red arrow)
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retinal boundary was represented as a 2D point cloud. 
The thickness of each retinal layer was then calculated 
at each voxel on the surface map by finding the nearest 
point between adjacent boundaries using the k-nearest-
neighbor search algorithm (k = 1), following the shortest-
distance algorithm introduced in the FreeSurfer package 
[36] similar to the cortical thickness calculation in ana-
tomical brain magnetic resonance imaging. The OCT 
volumetric data is highly anisotropic, with the lateral 
resolution (4  µm voxel dimension) lower than the axial 
resolution (1.6 µm voxel dimension). To ensure accurate 
thickness estimation, the surface boundary layer dis-
tances were first converted to an isotropic sampling space 
(1.6 µm isotropic) to effectively upsample the lateral reso-
lution. The resultant point-wise retinal surface thickness 
maps were then converted to their physical dimensions 
by multiplying the upsampled pixel dimension.

To further assess the extents of excitotoxic damage in 
different areas of the retina, we also calculated the mean 
thickness measurements in both the central and periph-
eral retinas. The mean retinal thicknesses in the full field-
of-view (FOV), and in the central and peripheral retinas 
were calculated using circular regions of interest (ROI) 
centered at the optic nerve head as illustrated in the top-
left sample image in Fig. 4. The optic nerve head region 
was excluded from the thickness analysis using a wide 
margin mask. The mean thicknesses of the total retina, 
the inner retinal layers (i.e., combination of ILM-RNFL, 
GCL, IPL, INL, OPL, and ONL), and the outer retinal 
layers (i.e., combination of ELM, PRL, RPE, and BM) as 
well as their individual layers were reported.

Statistical analysis
A pairwise t-test was conducted to compare the thick-
ness measurements between the NMDA-injected eye and 
the contralateral uninjured eye at each time point. Mul-
tiple comparisons were controlled with false discovery 
rate = 0.1. Results were considered statistically significant 
when corrected p < 0.05.

Results
OCT image preprocessing and retinal layer segmentation
Accurate segmentation of retinal layers in OCT is chal-
lenging due to the presence of speckle noise and low 
contrast in some neuronal layers. To tackle these chal-
lenges, this study developed an end-to-end OCT image 
processing and analysis pipeline for measuring the longi-
tudinal retinal layer changes in preclinical rodent experi-
ments, by extending our previous research on a clinically 
validated retinal layer segmentation pipeline [13, 27, 28] 
that was based on the deep convolutional neural network 
[28] and clinical retinal OCT data [27]. Figure  2 shows 
the sample raw OCT B-scan images and the results of 

each preprocessing step. After motion correction, the 
reduced axial motion artifact led to a smoother repre-
sentation of the retinal layer boundaries (Fig.  2A–D). 
This process ensured the preservation of the original 
anatomical shape for an accurate representation of the 
layer thickness in the final thickness estimation step. 
The speckle noise reduction through the bounded-vari-
ation smoothing allowed more accurate delineation of 
ground truth layer segmentation for training the deep 
learning-based auto-segmentation model. Figure 3 shows 
the representative images of the OCT B-scans and their 
automatic retinal layer segmentation from the experi-
mental NMDA-injected eye and the contralateral control 
eye at each experimental time point using the deep learn-
ing-assisted LF-UNet pipeline. The auto-segmentation 
model was able to follow the blood vessel boundaries in 
the RNFL layer while avoiding the projection artifacts in 
the outer retinal layers.

Longitudinal profiles of retinal degeneration based 
on layer‑specific thickness changes
Figure  4 shows the thickness maps of all 10 segmented 
retinal layers in both the NMDA-injected eye and the 
contralateral control eye of a representative animal. 
In the control eye, no apparent longitudinal thickness 
change was observed across any retinal layers. In con-
trast, distinct patterns of layer-specific thickness changes 
could be observed in the experimental NMDA-injured 
retina. For instance, within the inner retina (i.e., ILM to 
ONL), IPL, INL, and RNFL thinning could be observed 
in the NMDA-injected eye relative to the contralateral 
control eye at 3, 7, and 28  days post-injection, respec-
tively. Within the outer retina (i.e., ELM to BM), thinning 
of the photoreceptor and RPE layers could be observed 
at days 3 and 7 after NMDA injection, whereas the BM 
thickness reduced at day 7 and 28.

Figure 5 shows the thicknesses of the total retina (i.e., 
ILM to BM), inner retina, and outer retina within the full, 
central, and peripheral regions for all animals. No appar-
ent thickness change was observed in the left uninjured 
control retina over time. In the NMDA-injected eye, sig-
nificant total retinal thickness reduction was observed 
relative to the contralateral eye at day 7 and day 28 in 
full FOV (Fig.  5A), and both the central (Fig.  5B) and 
peripheral retinas (Fig.  5C). The main contribution of 
the reduced total retinal thickness at days 7 and 28 was 
apparently in the inner retina (Fig.  5D–F), with the full 
FOV retinal thickness showing an approximately 10.5% 
and 15.8% decrease, respectively in the NMDA-injected 
eye relative to the control eye. The outer retina thickness 
was reduced at day 7 by 3.9%, which then significantly 
increased at day 28 by 5.5% in the NMDA-injected eye 
relative to the control eye (Fig. 5G–I).
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Fig. 4 Retinal layer thickness maps in both the NMDA-injected eye (right panel) and the contralateral control eye (left panel) of a representative 
rat. The images showed gradual thickness changes along 4 time points: Day 0 prior to the unilateral intravitreal NMDA injection, and Day 3, Day 
7, and Day 28 after NMDA-induced excitotoxic retinal injury. For each retinal scan, the thickness maps of the following ten retinal layers were 
measured: ILM-RNFL, GCL, IPL, INL, OPL, ONL, ELM, PRL, RPE, and BM. The region around the optic nerve head was excluded from the downstream 
analysis. Top left sample illustrated the definition of the full field-of-view (a, red-to-blue), peripheral retina (b, white-to-blue), and central retina (c, 
red-to-white) for calculating the mean retinal thickness, as well as the optic nerve head mask (d. white central circle)
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To further understand the longitudinal effects of 
NMDA-induced excitotoxicity on the individual retinal 
layers, we analyzed the thickness of each of the inner 
retinal layers (i.e., ILM-RNFL, GCL, IPL, INL, OPL, and 
ONL; Fig. 6) and outer retinal layers (i.e., ELM, PRL, RPE, 
and BM; Fig. 7), and compared these measures between 
the NMDA-injected eye and the contralateral control eye. 
Overall, the full FOV retina (left column), central retina 
(middle column), and peripheral retina (right column) 
began with no difference in retinal thickness between the 

contralateral eyes at baseline (day 0), and then exhibited 
similar patterns of layer-specific thickness changes in the 
NMDA-injected eye over time.

Within the inner retina, the ILM-RNFL of the 
NMDA-injected eye was significantly thicker than that 
of the contralateral control eye at day 3 (Fig. 6A). The 
ILM-RNFL thickening was then normalized at day 7 
(Fig. 6B) and became significantly thinner than the con-
tralateral eye at day 28 (Fig. 6C). The GCL underwent a 
similar longitudinal thickness change as in ILM-RNFL, 

Fig. 5 Statistical analyses of the thicknesses of the total retina (A–C), inner retina (ILM-ONL) (D–F), and outer retina (ELM-BM) (G–I), derived 
from the nine experimental animals. Measurements were made for the full field-of-view (left column), as well as both the central (mid-column) 
and peripheral retinas (right column). The distributions are represented using box and whisker plots and the outliers are plotted outside of the lines. 
In descending order, the lines in the plots represent: maximum, third quartile, median, first quartile, and minimum. Retinal thinning was observed 
in both inner and outer layers of the NMDA-injected eyes, with similar severity between central and peripheral retinas. The longitudinal total 
retinal thickness reduction in the NMDA-injected eye was mainly contributed to by the inner retina. A pairwise t-test was conducted to compare 
the thickness difference between the NMDA-injected eye and the contralateral control eye at each time point. Multiple comparisons were 
controlled with a false discovery rate (FDR) = 0.1. The FDR-corrected p-values were shown at the top of each subplot, with the significant p values 
(< 0.05) shown in red

Fig. 6 Statistical analyses of the thicknesses of the inner retinal layers including ILM-RNFL (A–C), GCL (D–F), IPL (G–I), INL (J–L), OPL (M–O), and ONL 
(P–R), derived from the nine experimental animals. The distributions are represented using box and whisker plots and the outliers are plotted 
outside of the lines. Differential patterns of retinal thickness changes were observed across the inner layers of the NMDA-injected eyes, with similar 
severity between central and peripheral retinas. A pairwise t-test was conducted to compare the thickness difference between the NMDA-injected 
eye and the contralateral control eye at each time point. Multiple comparisons were controlled with a false discovery rate (FDR) = 0.1. The 
FDR-corrected p-values were shown at the top of each subplot, with the significant p values (< 0.05) shown in red

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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except that the thickness difference was less significant 
at day 3 (Fig. 6D–F). The IPL (Fig. 6G–I) in the NMDA-
injected eye was significantly thinner than the control 
eye from day 3 to day 28. The INL (Fig.  6J–L) of the 
NMDA-injected eye was significantly thinner than the 
control eye at day 7 and day 28. Similar patterns of lon-
gitudinal changes were noted in the central and periph-
eral retinas. No significant between-eye differences 
were observed in the OPL or ONL thickness except for 
a slight thickening at day 3 (Fig. 6M–R).

Within the outer retina, the ELM of the NMDA-
injected eye became significantly thinner at days 3 and 
7, and normalized to the pre-injection thickness at day 
28 in both the central and peripheral retinas (Fig. 7A–
C). A similar pattern was observed in the RPE layer 
mainly in the full FOV (Fig.  7G–I). The PRL did not 
differ between contralateral eyes initially but became 
thicker in the NMDA-injected eye than the control 
eye in both the central and peripheral retinas at day 
28 (Fig.  7D–F). The BM thickness was significantly 

Fig. 7 Statistical analyses of the thicknesses of the outer retinal layers including ELM (A–C), PRL (D–F), RPE (G–I), and BM (J–L), derived 
from the nine experimental animals. The distributions are represented using box and whisker plots and the outliers are plotted outside of the lines. 
Retinal thickness changes were observed in several outer layers of the NMDA-injected eyes, with similar severity between central and peripheral 
retinas. A pairwise t-test was conducted to compare the thickness difference between the NMDA-injected eye and the contralateral control eye 
at each time point. Multiple comparisons were controlled with a false discovery rate (FDR) = 0.1. The FDR-corrected p-values were shown at the top 
of each subplot, with the significant p values (< 0.05) shown in red
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reduced starting from day 3 and remained stable until 
day 28 (Fig. 7J–L).

Discussion
This study demonstrated the longitudinal effects of exci-
totoxicity on retinal integrity upon unilateral NMDA 
injection, using OCT-based deep learning-assisted 
retinal layer segmentation and thickness monitoring 
estimation. The retinal thicknesses showed distinct layer-
specific temporal patterns, while similar spatial patterns 
were observed between central and peripheral regions. 
Within the inner retina, we observed early IPL thinning 
followed by INL thinning, whereas RNFL initially thick-
ened before normalizing and thinning, implicating the 
IPL thickness as an early imaging biomarker of excito-
toxic retinal degeneration. Within the outer retina, early 
but slight thinning occurred in ELM, RPE, and BM, fol-
lowed by normalization of ELM and RPE up to 4 weeks 
post-NMDA injection, while PRL showed no thinning 
but delayed thickening at day 28. The distinct tempo-
ral patterns of thickness changes across different reti-
nal layers indicated the importance of determining the 
dynamics of neurodegenerative events for more targeted 
interventions at different stages of disease progression.

NMDA‑induced retinal excitotoxicity manifested in terms 
of distinct, layer‑specific structural changes during disease 
progression
Excitotoxicity from glutamate uptake impairment and 
NMDA overstimulation is believed to play a key role in 
various retinal pathologies [5–7]. Our study provides a 
comprehensive framework for quantitative analyses of 
layer-specific changes in retinal thickness across 28 days 
of NMDA-induced excitotoxicity in a rat model. Spe-
cifically, to investigate the longitudinal changes in retinal 
layer thickness, we created an end-to-end artificial intel-
ligence (AI)-assisted automatic pipeline to correct retinal 
axial motions, segment the retinal layers, and calculate 
the mean retinal layer thicknesses in the central and 
peripheral retinas. Our results showed that the total ret-
ina of the NMDA-injured eye became significantly thin-
ner compared to the contralateral eye from day 7 up to 
day 28 after intravitreal injection, with a majority of the 
thickness reduction attributed to the inner retina. Fur-
thermore, individual layer thickness estimation provided 
a more sensitive and earlier imaging biomarker than 
the total retinal thickness, inner retinal thickness, and 
outer retinal thickness, with the first sign of inner retinal 
degeneration being observed in the IPL at day 3, followed 
by INL at day 7. This observation appeared consist-
ent with recent histological studies demonstrating early 
shrinkage of RGC dendrites and presynaptic connections 
in the IPL before observable RGC and axonal damage in 

glaucoma and optic nerve injury models [4, 8, 37–41], 
demonstrating potential clinical relevance of early IPL 
alteration in glaucoma patients associated with wors-
ening visual function [10, 42]. On the other hand, the 
ILM-RNFL in the NMDA-injected eye underwent differ-
ent levels of increases in thickness at day 3, followed by 
pseudo-normalization at day 7 and significant thinning at 
day 28 as compared to the contralateral control eye. This 
temporal pattern of an increase in thickness preceding 
a decrease in RNFL suggests inflammation before cel-
lular and axonal death. Prior studies have also reported 
thickening of the inner retina or RNFL due to inflamma-
tion [43–45], inflammatory and oxidative stress signaling 
with NMDA overstimulation [46–48], early inner retina 
thickening with NMDA overstimulation [49], as well as 
dendritic shrinkage visible by fluorescence imaging prior 
to ganglion cell complex thinning in other disease models 
[50]. Taken together, these findings call for caution in dif-
ferentiating healthy tissues from pseudo-normalization 
when interpreting changes in retinal thickness, and the 
need to take longitudinal measurements when examining 
OCT scans in retinal diseases.

Glutamate uptake impairment is thought to be a major 
factor in neurological diseases where excess glutamate in 
the extracellular compartment leads to excessive activa-
tion of NMDA receptors and causes excitotoxic damage 
to neurons [51]. The NMDA receptor ligand-gated cal-
cium channel contains four subunits (GluN2, GluN3, and 
two GluN1 subunits) [52]. Different subunits have been 
shown to play layer-specific roles in the retina. For exam-
ple, GluN2 has been shown to potentially serve a neuro-
modulatory role in the IPL, whereas increased expression 
of GluN2B isoform has been implicated in the degenera-
tion of the RGC layer in glaucoma [53]. RGCs exposed to 
elevated intraocular pressure increased their susceptibil-
ity to glutamate-induced death, and subjecting these cells 
to both elevated pressure and glutamate led to induc-
tion of apoptosis and BAX, suggesting glutamate and 
increased intraocular pressure together may play a part 
in the pathogenesis of glaucoma [54–56]. Several clinical 
studies have suggested RNFL thickness to be useful in the 
diagnosis and monitoring of glaucoma [57, 58], while oth-
ers suggested GCL-IPL or IPL thickness alone were more 
strongly associated with the severity of disease [18, 19]. 
On the other hand, INL thickness was found to be rela-
tively unaffected in patients with long-standing glaucoma 
[19]. However, these studies only measured retinal layer 
thickness at a single time point. It is essential to evalu-
ate the longitudinal effects of excitotoxicity on the retinal 
cytoarchitecture and functionality in order to unveil and 
localize the pathological cascades across retinal layers, to 
guide early disease detection, and to monitor and opti-
mize targeted neuroprotective treatment [59, 60].
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Previous studies using ex  vivo immunohistochemis-
try staining of rat retinal samples after NMDA injec-
tion have shown retinal layer thinning and apoptotic 
changes, especially in the GCL, and the severity of neu-
rodegeneration increased with NMDA dosage [61–63]. 
However, prior histology studies only reported the inner 
retinal layer degeneration at either day 7 [61, 63] or 14 
[62], lacking the ability to evaluate longitudinal effects 
within the same animals. A recent study introduced 
in  vivo OCT on a chicken model of NMDA-induced 
retinal injury and reported significant retinal thickness 
reduction in the IPL, although at a relatively late time 
point at 14  days after injection [64], and the thickness 
was derived through manual selection of eight meas-
urement points across the retina. Comparatively, the 
results of our current study using a rat model showed 
time-dependent NMDA-induced retinal thickness alter-
ations, especially in the inner retinal layers, across 3 to 
28  days after excitotoxic retinal injury. Specifically, our 
longitudinal thickness analysis revealed significant thin-
ning of the IPL as early as at 3  days post-NMDA injec-
tion, with a significant RNFL layer thinning at a later 
time point (28  days post-NMDA injection) after initial 
retinal thickening. These observations align temporally 
with early phases of inflammatory signaling. Further-
more, our study identified NMDA-derived outer retinal 
layer alterations, indicating a potential neurotoxicity 
effect towards the outer retina. However, as the outer 
retinal changes reported are small in the order of 1–2 
microns, the axial resolution of the instrument and the 
accuracy of the algorithm should be taken into account 
while interpreting the results. Overall, the results of this 
study provided novel insights about the dynamic and 
layer-specific patterns of neurotoxicity in the retina. The 
differential structural changes in retinal thicknesses of 
the NMDA-injured eyes implicated different pathologi-
cal processes as well as compensatory mechanisms across 
retinal layers, which offered an important step to guide 
further studies to identify the underlying cellular mecha-
nisms at each time point. Last but not least, our findings 
indicated that OCT with appropriate segmentation pro-
tocols could serve as a high-throughput, cost-effective, 
and non-invasive alternative to complement histological 
studies. For example, when using histology to assess early 
mouse retinal changes from 4 h to 7 days after NMDA-
induced excitotoxicity, early TUNEL reactivity was 
found in the INL followed by increased TUNEL reactiv-
ity in the GCL and PRL that peaked at 24 h post-NMDA 
injection [65]. This early neuropathology was accompa-
nied by distinct phases of inflammatory signaling rang-
ing from 24 h to 7 days. The spatiotemporal changes in 
retinal thickness detected by our AI-assisted OCT imag-
ing generally aligned with these pathological events, but 

in a non-invasive, in vivo, and longitudinal imaging set-
ting within the same cohort of rats. These technological 
advancements can allow a close monitoring of the disease 
progression with or without pre- or post-conditioning 
in order to facilitate testing of causal pathophysiological 
mechanisms and neurotherapeutic effects with rigor.

Translational applications of AI‑integrated pipeline 
for automated processing of retinal thickness changes 
in small animal studies
Recent innovations in AI methods have benefited clinical 
research substantially. For instance, deep learning-based 
medical image analysis has been used in ophthalmic big 
data containing OCT for computer-assisted diagnosis of 
retinal diseases [22, 66, 67]. In contrast, preclinical ani-
mal studies usually involve small sample sizes, hindering 
the effective adaptation of modern deep learning-based 
AI applications, which generally require large, labeled 
samples to train the models accurately. Reverse trans-
lation of clinically derived AI methods into preclinical 
small animal studies may offer a solution to this data 
availability challenge [30]. A robust automatic retinal 
layer segmentation pipeline for animal OCT data would 
significantly improve the processing throughput, meas-
urement repeatability, and analysis accuracy. In this 
study, we have extended our previously developed and 
clinically validated deep learning-based automatic reti-
nal layer segmentation framework [27, 28, 68] into adult 
rat OCT images. It is worth noting that, compared to the 
human retina, the rat retina lacks a fovea. To this end, the 
LF-UNet deep learning-based retinal layer segmentation 
framework that we developed and used in this study was 
trained on 2D B-scans extracted from the original 3D 
OCT volume, with a large proportion of 2D B-scans at 
the non-foveal locations, which ensured that the segmen-
tation model had a good understanding of the general 
retinal structure across different B-scan locations.

To address the challenges of the lack of standardized 
retinal layer segmentation labeling, the limited data with 
ground truth labels of layer segmentation, and the diverse 
levels of anatomical variations due to experimentally-
induced retinal pathology, we have implemented a com-
position of two techniques, transfer learning [27] based 
domain adaptation [35] and pseudo-labeling [31], into 
our existing retinal layer segmentation pipeline, in com-
bination with the data augmentation technique. Firstly, 
the transfer learning technique used a pretrained model 
trained from a large number of human retinal data with 
segmentation labels. Such an approach ensured that the 
segmentation model parameters were initialized with a 
good understanding of the general retinal anatomy and 
OCT image characteristics, significantly reducing the 
need of training data from rat retinal OCT with ground 
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truth labels in the fine-tuning step. Secondly, during the 
fine-tuning step, data augmentation was used to intro-
duce random affine transformation to the input data, 
increasing the range of structural variability even with 
small training data. The combination of these two steps 
has shown to allow effective training of AI models in few 
shots while achieving good performance with few sam-
ples [69]. Finally, the pseudo-labeling technique further 
improved the generalizability of the automatic segmenta-
tion model by gradually expanding the training data, so as 
to propagate and further fine-tune the model parameters 
with an increased semi-automatic training sample using 
(pseudo-)ground truth labels from both manual and 
automatic segmentations. Using this extended frame-
work, we were able to automatically and robustly ana-
lyze the neurotoxicity-induced thickness changes across 
ten retinal layers simultaneously for spatiotemporal 
assessments.

Limitations and future directions
The current study focused on the in  vivo examination 
of retinal layer thickness as a surrogate measurement of 
NMDA-derived excitotoxicity. The primary objective is 
to leverage a well-established animal model and use AI-
based OCT image processing and analysis to facilitate the 
longitudinal assessment of the neurotoxic effects across 
layers over 4 weeks. While human and rodent eyes share 
many similarities, there are also challenges in reverse 
translation across species such as the size differences, 
intrinsic structural differences including the lack of fovea 
in rodents, as well as the differences in OCT devices 
used for collecting clinical and preclinical OCT data that 
should be further studied. In the current study, a wide 
margin mask was used to excuse the optic nerve region 
from deriving the layer segmentation and estimating 
the thickness analysis. Given the known anatomical dif-
ferences of the optic discs between human and rodents, 
further studies with additional optic nerve labeling would 
be beneficial to segment the optic nerve head structures 
and analyze the effects of NMDA-induced excitotoxicity 
towards the optic disc.

A recent study reported the potential induction of reti-
nal degeneration upon intravitreal normal saline injec-
tion in C57BL/6J mice [70]. While our previous study 
using Sprague–Dawley rats did not show apparent retinal 
thickness changes upon intravitreal normal saline injec-
tion [16], future studies can consider phosphate-buffered 
saline as the diluent of NMDA instead of normal saline 
to avoid any potential complications. The translat-
ability and generalizability of the current findings in the 
NMDA-induced excitotoxic retinal injury model should 
also be validated in other animal models. When analyz-
ing longitudinal data, different approaches could be used 

to address the research questions of interest. The cur-
rent study focuses on assessing the excitotoxic effects 
of NMDA injection compared to the non-injected con-
tralateral eye at each time point to account for the physi-
ological and age-related changes that may occur in the rat 
retina. Therefore, we used pairwise group comparisons of 
the mean retinal layer thicknesses between the injected 
and control eyes at each time point, which intrinsically 
accounted for the potential longitudinal retinal layer vari-
ations in the contralateral non-injected eye. Future stud-
ies may consider repeated measures ANOVAs or other 
statistical models to examine the overall longitudinal 
thickness variations for both eyes with larger samples. 
Further histological studies can also be conducted to con-
firm the retinal layer boundaries and identify cell-type 
specific responses underlying the morphological changes 
detected in the current study. We can also combine non-
invasive retinal OCT, brain magnetic resonance imaging, 
and visual functional assessments to determine the inter-
actions between eye, brain, and behavior in health and 
disease.

Conclusion
Using longitudinal OCT monitoring and deep learning-
assisted automatic retinal layer segmentation, we dem-
onstrated the pathological cascades of NMDA-induced 
excitotoxic retinal injury across multiple layers over 
4  weeks of experimental period. Thicknesses from indi-
vidual retinal layers offered more sensitive and specific 
imaging biomarkers than the combined total retinal 
thickness, inner retinal thickness, and outer retinal thick-
ness in monitoring retinal injuries, whereas caution is 
warranted when interpreting the ganglion cell complex 
combining RNFL, GCL, and IPL thicknesses in con-
ventional OCT measures, as these layers can thicken 
and thin to different extents and the ganglion cell com-
plex may pseudo-normalize during disease progression. 
Deep learning-assisted retinal layer segmentation and 
longitudinal OCT monitoring can help evaluate the dif-
ferent phases of retinal layer changes upon exposure to 
excitotoxicity. These findings implicate the importance 
of monitoring the distinct spatiotemporal patterns of 
neurodegenerative events for guiding more targeted 
and effective interventions at different stages of disease 
progression.
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