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Guam amyotrophic lateral sclerosis/parkinsonism–
dementia complex (ALS/PDC) is a rare 
neurodegenerative disorder with high prevalence 
among the native Chamorro population of Guam 
(Mariana Islands) [1–3]. ALS/PDC presents clinically 
as progressive motor neuron disease (resembling classic 
ALS), parkinsonism with dementia, or a combination 

of both. At the neuropathological level, ALS/PDC is 
characterized by tau-dominant multiple proteinopathy 
(Fig.  1) (an overview of neuropathology can be found 
in [4]). The etiology of ALS/PDC is unclear, although 
involvement of both genetic and environmental factors 
has been suggested. The prevalence of ALS/PDC has 
declined dramatically in Guam, coincident with rapid 
westernization [5, 6]. Additionally, migration studies 
indicate that disease risk is increased after prolonged 
residence in the geographic cluster [7]. These findings 
hint at an important role for environmental or lifestyle 
factors in the disease. Recent whole-genome sequencing 
(WGS) analysis of postmortem brain and spinal cord 
tissues from ALS/PDC cases did not find evidence for 
neurogenetic causes (Additional File 1) and results of 
cryogenic electron microscopy analysis of tau filaments 
from ALS/PDC cases are in line with an environmental 
etiologic hypothesis [8]. There is great interest in 
understanding the cause of ALS/PDC in Guam, because 
insight into its origins may also yield clues as to the cause 
of common neurodegenerative diseases throughout the 
world [9, 10].

One hypothesis for the cause of ALS/PDC in Guam 
involves exposure to toxins present in cycad plants. 
Epidemiological work has shown a significant associa-
tion between exposure to cycad and neurological dis-
ease on Guam [11]. Cycad seeds are known to contain 
several potentially toxic agents, e.g., cycasin and its 

Information regarding members of the NYGC ALS Consortium can be found 
in Additional File 3: Table 1.
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aglycone methylazoxymethanol (MAM) [12, 13] and 
β-N-methylamino-L-alanine (BMAA) [14, 15], which 
have both been tenuously linked to neurological disease 
in Guam. The cycad-associated toxin MAM is a potent 
DNA alkylating agent that has been shown to induce 
 O6-methylguanine  (O6-mG) lesions in DNA [13]. Previ-
ous work has found that such DNA lesions in particular 
are associated with a process known as transcriptional 
mutagenesis (TM) that introduces mutations, not present 
in DNA, into newly synthesized RNA molecules [16]. 
Errors in transcription have been linked to proteotoxic 
phenotypes [17], and may play a role in the pathogen-
esis of ALS/PDC [18, 19]. Although the cycad hypoth-
esis for ALS/PDC has fallen into disfavor [20], it remains 
unknown whether MAM exposure promotes TM.

To determine the effects of MAM on TM, we used a 
single-cell RNA-sequencing (scRNA-seq) approach. We 
argued that if a lesion is present at a specific site in DNA, 
it could result in the generation of a substantial number 
of “misread” transcripts that carry an RNA–DNA 
discrepancy at that same specific location. If transcripts 
are tagged with a unique molecular identifier (UMI), it 
should be possible to perform sequence comparisons 
of transcripts present in a single cell. Such comparisons 
would not be feasible using bulk RNA-sequencing, 
because reads in bulk RNA-seq data may correspond to 

distinct DNA lesions in different cells. This scRNA-seq 
strategy has recently been used in another study [21], in 
which arrested yeast cells and quiescent mouse neural 
stem cells (NSCs) were exposed to N-methyl-N′-nitro-
N-nitrosoguanidine (MNNG), a chemical compound 
that is routinely used to induce  O6-mG DNA lesions and 
RNA synthesis errors [16, 22], and subsequently used as 
input material for scRNA-seq. It was found that certain 
transcription errors do indeed occur repetitively as a 
consequence of MNNG exposure. Additionally, those 
experiments showed that exposure to MNNG induced 
expression of genes associated with protein quality 
control machinery [21]. For the experiments with 
MAM, we treated a homogeneous culture of quiescent 
NSCs with 1 mM MAM acetate or vehicle (phosphate-
buffered saline [PBS]) for 1  h. We used NSCs, because 
these are neural cells (i.e., they represent a disease-
relevant cell type) and because they can be easily put 
in a quiescent state by altering the composition of the 
culturing medium (Fig.  2A). Using quiescent cells was 
important, to prevent fixation of DNA damage into 
DNA mutations, which would confound transcription 
error measurements (this is also why non-replicating 
yeast cells and quiescent NSCs were used in previous 
experiments with MNNG). Next, cells were rinsed 
with PBS to remove MAM from the culturing medium, 

Fig. 1 Phosphorylated tau (pTau) aggregates in Guam ALS/PDC tissues. pTau cytoplasmic inclusions in brain (A–C) and anterior horn of the spinal 
cord (D‑F) in Guam ALS/PDC cases (AT8, Innogenetics). A–C and D–F show increasing magnifications of representative immunostained tissue 
sections. pTau aggregates in brain and spinal cord are well‑known pathological hallmarks of ALS/PDC and were used for diagnosis of cases included 
in Additional File 1. Tissue sections correspond to Guam PDC subject #3 (A–C) and #1 (D–F) from [8]
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after which they were allowed to recover in quiescence 
medium for 16 h. Again, an important consideration is 
that, as long as DNA damage is not repaired, bursts of 
transcription on the damaged DNA will result in mutant 
RNAs that contain an error at the same location as the 
corresponding damage site. After the incubation period, 
cells were collected for scRNA-seq experiments. The 

single-cell data demonstrated that MAM-treated NSCs 
display an increase in C → U errors (average error rate: 
6.9 ×  10–5  bp−1) as compared to control (vehicle-treated) 
cells (average error rate: 6.7 ×  10–6   bp−1) (Fig.  2B) 
(Additional File 2). C → U errors are the primary type 
of transcription error induced by  O6-mG lesions [16] 
and are consistent with MAM-induced DNA damage. 

Fig. 2 Methylazoxymethanol (MAM) exposure induces transcriptional mutagenesis in neural stem cells. A Overview of the experiment. Mouse 
primary hippocampal neural stem cells (NSCs) were cultured in quiescence medium for 3 days. Cell cycle arrest was validated by Ki‑67 staining. 
Next, quiescent NSCs were treated with 1 mM methylazoxymethanol (MAM) acetate or vehicle (PBS) for 1 h, after which cells were rinsed with PBS 
and cultured for 16 more hours in quiescence medium. Cells were then collected and used for single‑cell RNA‑seq experiments. B The error 
spectrum of RNAPII in MAM‑treated NSCs shows an increased C → U error rate as compared to vehicle‑treated cells. *P < 0.01, unpaired two‑tailed 
t‑test. C MAM treatment results in transcripts containing identical errors, termed pseudo‑alleles for their ability to generate both WT and mutant 
transcripts. The graph depicts the ratio of mutant:WT mRNAs detected. Only alleles with more than 10% mutant mRNAs are included (MAM‑treated 
replicate #1). D It is proposed that (1) mutant RNAs, which are the result of transcriptional mutagenesis on unrepaired  O6‑methylguanine 
 (O6‑mG) DNA lesions, could initiate disease by generating toxic molecules, e.g., misfolded proteins that act as proteopathic seeds. Additionally, (2) 
an overall increase in the number of erroneous RNAs could overwhelm the cellular protein quality control machinery, potentiating proteotoxic 
stress phenotypes by impairing the clearance of toxic proteins. Lastly, (3) transcription errors could promote the transition of stressed cells 
to a dysfunctional state through various mechanisms
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Importantly, there was no comparable increase in 
G → A errors in MAM-treated samples, which shows 
that mutations in DNA do not underlie this effect. 
Interestingly, we could identify erroneous transcripts 
that were present in a ≥ 50:50 ratio to WT transcript 
(Fig.  2C). This suggests that certain DNA lesions 
can mimic the effect of a DNA mutation. In separate 
experiments, rolling-circle consensus sequencing 
(CirSeq) of RNA isolated from MAM-treated vs. 
vehicle-treated primary mouse fibroblasts indicated an 
increased overall transcription error output (N → N) 
following MAM treatment (Additional File 2).

This data demonstrates that exposure to MAM, an 
environmental genotoxin, induces TM. The full biologi-
cal significance of faulty RNAs generated through TM 
remains to be determined. Previous work has shown 
that an overall increase in transcription errors causes a 
profound loss of proteostasis and potentiates the toxic-
ity of disease-related proteins in cells [17]. Addition-
ally, these errors could contribute to the generation of 
the amyloid proteins that drive neurodegeneration [23] 
(Fig.  2D). Even though the cause of ALS/PDC remains 
unknown, and cycad toxins are an unlikely culprit [20], 
it will be interesting to explore the links between DNA 
damage, transcript errors, protein misfolding and aggre-
gation phenotypes in more detail in future work. These 
findings may also have implications for the study of other 
environmental toxins (e.g., pesticides) and their relation 
to neurological disease as well as other disorders like can-
cer. The in vitro experiments with MAM described here 
should ideally be complemented by other assays, such as 
DNA damage and mutation detection assays, and should 
preferably also be extended to human cells (e.g., human 
induced neurons) and intact animals. We anticipate that 
transcript error analysis will be a valuable addition to 
(neuro)toxicology testing.
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