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To the editor

Charcot-Marie-Tooth disease type 2A2 (CMT2A2) is the 
second most common type of CMT, characterized by 
axonal neuropathy, and 9–20% of affected patients pre-
sent with optic atrophy [6, 8]. It is caused by mutations 
in the mitofusin2 (MFN2), which encodes a component 
of the outer mitochondrial membrane, and is essential for 
mitochondrial fusion [2]. Although a number of clinical 
studies have been reported, the neuropathologic features 
remain unknown. Here we evaluated the clinicopatho-
logic features of two unrelated autopsied patients harbor-
ing MFN2 mutation.

The two unrelated males (patients 1 and 2) without 
similar symptoms in their families exhibited similar clini-
cal characteristics, having developed gait disturbance in 
early childhood, followed by gradually progressive mus-
cle atrophy and sensory disturbance in the upper and 
lower extremities. No formal ophthalmologic examina-
tion was performed and no subjective symptoms of visual 
impairment were noted. In both patients, MRI imaging 
demonstrated atrophy of the optic pathway and FLAIR 
hyperintensities in the subcortical white matter, extend-
ing from the middle cerebellar peduncles (MCPs) to the 
cerebellar white matter (WM), being accompanied by 
enlarged lateral ventricles in patient 1 (Fig.  1a–e). Both 
patients died in their 70  s, and at autopsy the brains 
weighed 1250 g and 1100 g, respectively. The brain weight 
of patient 1 was within the normal range, whereas that 
of patient 2 was moderately reduced due to old cerebral 
hemorrhage. The patients’ clinical features are summa-
rized in Table 1. Genetic analysis revealed a heterozygous 
missense mutation, p.Arg364Trp (c.1090 C > T), in MFN2 
in both patients (Fig. 1f ).

The histopathologic features of the nervous system in 
patients 1 and 2 were quite similar, being characterized 
by degeneration of the visual, dorsal column pathway, and 
dorsal spinocerebellar and corticospinal tracts (Table 2). 
These changes were more severe in patient 1. In the visual 
pathway, optic nerves exhibited atrophic change (Fig. 2a) 
with axonal depletion and swelling (Fig.  2b and c). 
Severe neuronal loss in the lateral geniculate body (LGB) 
(Fig. 2d) and moderate loss of large neurons in layers IV 
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of the striate cortex (Fig. 2e) were also evident. Unfortu-
nately, we were unable to assess the LGB in patient 2 due 
to putaminal hemorrhage (Additional file  1: Fig. S1). In 
the dorsal column pathway, the dorsal column, especially 
in the gracile fasciculus, showed severe atrophy and mye-
lin pallor (Fig. 2f ), accompanied by severe neuronal loss 
in the gracile and cuneate nuclei. Loss of ganglion cells 
in the dorsal root ganglion was also observed (Fig.  2g). 
The dorsal spinocerebellar tract showed myelin pallor 

with severe neuronal loss in Clarke’s nucleus (Fig.  2h), 
while the cerebellar cortex was preserved. In the motor 
system, the lumbar anterior horn cells showed severe 
neuronal loss (Fig. 2i), and the iliopsoas muscle exhibited 
neurogenic changes (Fig. 2j). In the spinal anterior horns 
of both patients, pTDP-43 immunostaining revealed 
no granular, round, or skein-like neuronal inclusions or 
glial cytoplasmic inclusions usually observed in sporadic 
amyotrophic lateral sclerosis (ALS). On the other hand, 
ubiquitin immunostaining revealed a few neurons with 
diffuse positive structures in the cytoplasm and neur-
ites only in patient 1 (Additional file 1: Fig. S3). The sig-
nificance of the ubiquitin-positive structures was unclear, 
but they did not exhibit the common immunohistochem-
ical staining patterns of ubiquitin observed in sporadic 
ALS. Further neuropathologic studies of CMT2A2 will 
be necessary to clarify the involvement of the ubiquitin–
proteasome system.

On the other hand, the primary motor area was not 
affected despite mild degeneration in the lateral cor-
ticospinal tract (Additional file  1: Fig. S2 and Fig.  2f ). 
Histological observation of the lesions showing FLAIR-
hyperintense lesions in the subcortical white mat-
ter and MCPs on MRI, which have been reported in 
CMT2A2 [3, 4], was not possible, but cerebellar white 
matter possibly associated with the hyperintensity 
showed mild myelin pallor (Additional file  1: Fig. S2). 
Other cerebral and brainstem nuclei were almost unaf-
fected in both patients (data not shown).

In the peripheral nerves, atrophy of the anterior and 
posterior roots was evident, histopathologically showing 
severe loss of thick and thin myelinated axons and thin-
ning of the remaining myelin sheaths (Fig.  2k–m). The 
sural nerve was the most severely affected (Fig. 2m). No 
onion bulb formations were observed (Fig. 2k-m).

Ultrastructurally, longitudinal sections of the sural 
nerve and the posterior spinal nerve roots demonstrated 
aberrant aggregated and round mitochondria in the 
patients (Fig.  3a, a’, c, c’), while normal elongated and 
thread-like mitochondria were randomly dispersed in 
the axons of the controls (Fig. 3b, b’). In the optic nerves, 
similar abnormal mitochondria were scattered (Addi-
tional file 1: Fig. S4).

We have presented the first genetically confirmed 
autopsy patients with CMT2A2, and have demonstrated 
that both patients exhibited a similar pathology, show-
ing degeneration in multiple systems in the CNS as well 
as peripheral nerves and ultrastructural changes in the 
mitochondria of the peripheral and optic nerves.

In CMT2A2, the p.Arg364Trp identified in our patients 
is known to be associated with optic atrophy and an 
early progressive clinical course [7], and this was con-
sistent with the clinicopathologic features of the present 

Fig. 1 MRI findings and genetic analysis. a Brain MRI images 
of patients 1 and 2 (Pt. 1 and 2). The T2-weighted images were 
acquired at the age of 69 (Pt. 1) and 50 years (Pt. 2). Hyperintensity 
in the intraorbital optic nerves (Pt. 1 and 2, red arrowheads) 
and preserved extraocular muscles (Pt. 1 and 2, red arrows) are 
evident. Coronal and sagittal T1-weighted images of Pt. 1 show 
atrophy of b the intracranial optic nerves (red arrowheads) and c 
lateral geniculate body (red arrowhead). Note the presence 
of disproportionately enlarged subarachnoid space hydrocephalus 
(DESH), a hallmark of idiopathic normal pressure hydrocephalus 
with enlarged lateral ventricles. Hyperintensities in d the subcortical 
white matter (Pt. 1, red arrows) and e extending from the middle 
cerebellar peduncles (Pt. 1, red arrowheads) to the lateral side 
of the cerebellar white matter. f Sanger sequencing of the mutation 
in MFN2. Red arrow indicates the mutation. FLAIR, fluid attenuated 
inversion recovery; Pt, patient; L: Left side of the brain
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patients. Based on our observations, severe muscle atro-
phy and sensory disturbance including impaired pro-
prioception prominent in the lower limbs [8] would be 
associated with loss of anterior horn cells and anterior 
roots, and degeneration of the dorsal column pathway 
along with Clark’s dorsal nucleus, respectively. We also 
found that the optic nerves had been markedly affected, 
followed by degeneration of the LGB and primary visual 
cortex, especially layer IV where the majority of geniculo-
cortical afferents terminate [1]. All of these affected sys-
tems were long pathways, and axons were more affected 
in the periphery. Interestingly, the neuronal cell bodies 
to which the axons directly connected also exhibited a 

Table 1 Clinical features of patients with MFN2 mutation

 + and –, presence and absence, respectively; N.A. Not available. U Upper limbs; 
L Lower limbs; MMT Manual muscle testing (0: no contraction; 1: flickering 
contraction; 2: full range of motion with eliminated gravity, 3: full range of 
motion against gravity, 4: full range of motion against gravity with minimal 
resistance, 5: full range of motion against gravity with maximal resistance); 
LGB Lateral geniculate body; WM White matter; DESH Disproportionately 
enlarged subarachnoid space hydrocephalus; MCP middle cerebellar peduncle. 
*Neurological examinations of patients 1 and 2 were performed at the ages of 
57 and 39 years, respectively. **Optic nerve and LGB

Patient 1 Patient 2

Age at time of death, 
years (y)/ sex

72 y/ Male 72 y/ Male

Consanguinity – +

Family history – –

Clinical symptoms

  Age at onset, y 5 y 2 y

  Initial symptom Gait instability Gait instability

  Muscle atrophy 
(U/L)*

 + , distal/ + , distal  + , distal/ + , distal

  Proximal muscle 
weakness (MMT: U/L)

Moderate (3–5/1–4) Moderate 
(3–4/0–3)

  Distal muscle weak-
ness (MMT: U/L)

Severe (1/0) Severe (1/0)

  Deep tendon 
reflexes (U/L)*

Loss/loss Loss/loss

  Sensory impairment* 
(superficial/deep)

 + / +  + / N.A.

  Foot deformities  +  + 

  Visual impairment N.A. N.A.

  Hearing loss – –

  Scoliosis – –

  Mental retardation – –

  Cognitive decline – –

  Cause of death Aspiration pneumonia Renal abscess

MRI findings Optic tract** atrophy,
enlarged lateral ven-
tricle,
DESH, subcortical WM 
and MCP to cerebellar 
WM hyperintensities 
on FLAIR

Optic nerve 
atrophy,
Lt. putaminal 
hemorrhage
subcortical WM 
hyperintensity 
on FLAIR

Table 2 Distribution of neuronal loss with gliosis

Neuronal loss with gliosis, +++: Severe, ++: Moderate, +: Mild, –: None, N.A. Not 
available. i/e: Internal/external segment; Vent. Ventral; Dors. Dorsal

*Loss of myelinated fibers. **Not available due to putaminal hemorrhage

Patient 1 Patient 2

Cerebrum

  Frontal cortex – –

  Motor cortex – –

  Temporal cortex – –

  Parietal cortex – –

  Occipital cortex (striate cortex) –/++ –/+

  White matter* – –

Subcortical area

  mmon (CA1/subiculum) –/– –/–

  Amygdaloid nucleus – –

  Caudate nucleus/putamen –/– –/ N.A.**

  Globus pallidus i/e –/– –/–

  Thalamus – –

  Subthalamic nucleus – –

  Lateral geniculate body +++ N.A.**

Brainstem

  Substantia nigra – –

  Pontine nucleus – –

  Cranial motor nerve nuclei
(IV/V motor/VI/VII/XII)

–/–/–/N.A./– –/–/N.A./–/–

  Ambiguus nucleus – –

  Dorsal vagal nucleus – –

  Inferior olivary nucleus – –

  Reticular formation – –

  Vestibular/cochlear nuclei –/N.A. –/N.A.

  Gracile/cuneate nuclei +++/++ +++/++

Cerebellum

  Cortex/white matter* –/+ –/+

  Dentate nucleus – –

  Spinal cord

  Anterior horn (C/Th/L/S) +/++/++/++ +/+/++/++

  Clarke’s nucleus +++ +++

  Intermediolateral nucleus – –

  Lateral corticospinal tract* + +

  Spinocerebellar tract (Vent./Dors.)* –/+ –/+

  Anterior funiculus (C/Th/L/S)* –/–/–/– ++/+ ± /–

  Posterior funiculus (gracile/cuneate)* ++/+ ++/+

Peripheral nerve

  Dorsal root ganglion (C/L) +/++ +/+

  Anterior nerve root (C/L)* +/++ +/N.A.

  Posterior nerve root (C/L)* +/++ +/N.A

  Sural nerve* +++ +++

  Sympathetic ganglion – –

Other

  Optic nerve* +++ ++
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Fig. 2 Neuropathologic findings. a Macroscopic appearance of the optic nerves. Atrophy is evident. b Depletion of myelinated fibers and c loss 
and occasional swelling of axons in the optic nerve. Klüver-Barrera staining (KB) and phosphorylated neurofilament (pNF) immunohistochemistry. 
d Moderate neuronal loss in the lateral geniculate body (LGB) and e large neurons in layer IV of the striate cortex. KB staining. f Atrophy and myelin 
pallor of the lateral corticospinal and dorsal spinocerebellar tracts (arrows), and dorsal columns (arrowheads). KB staining. g Loss of ganglion cells 
with a Nageotte nodule (arrowheads) in the dorsal root ganglion of the lumbar spinal cord. HE staining. h Severe neuronal loss in Clarke’s nucleus 
and i the anterior horn. KB staining. j Neurogenic change with small grouped atrophy is evident in the iliopsoas muscle k–m Coronal sections 
of the k anterior and l posterior nerve roots of the lumbar cord and m sural nerve. Severe loss of large and small myelinated fibers and thinning 
myelin sheath of residual fibers. Toluidine blue staining. Ctrl, control; Pt, patient. Bar in a = 5 mm in a; 1.3 mm in f; 200 μm in d, i; 160 μm in h, j; 
100 μm in e, g; 50 μm in b, c, j; 30 μm in k, l, m 
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similar "proximal–distal gradient" pattern, although the 
degree of degeneration was milder than that in axons.

Mitochondrial morphometry of the peripheral and 
optic nerves in our patients demonstrated the charac-
teristic features of biopsied peripheral nerves reported 
in 6 cases of early-onset CMT2A2 [9]. In all cases, the 
mitochondria appeared to be small and roundly aggre-
gated, and these findings were confined to the axons, 
even though various mutations were involved. By con-
trast, a study of Drosophila disease models reported 
that mitochondria with MFN2 mutation showed vari-
ous morphological changes such as hyperfusion and 
non-fusion, depending on the location of the mutation, 
and R364W-like mutation was associated with hyper-
fusion, with large and round mitochondria [5]. These 
findings suggest that mutations in MFN2 may cause 
defects in mitochondrial fusion and fission, reflect-
ing the essential role of MFN2. Although the patho-
mechanisms of neuronal alterations resulting from 
MFN2 mutation remain unknown, the varying degrees 
of degeneration of the central nervous system in rela-
tion to the peripheral nerves may provide clues to the 
pathogenesis of the disease.

In conclusion, degeneration of peripheral nerves and 
associated tracts, including neurons, with mitochon-
drial ultrastructural abnormalities was a pathologic 
characteristic of patients with MFN2 mutation. Further 
clinicopathologic and molecular studies are needed to 
clarify in more detail the selective vulnerability of sen-
sory and motor neurons in CMT2A2 in the context of 
MFN2-related mitochondrial abnormalities.

Abbreviations
ALS  Amyotrophic lateral sclerosis
CMT2A2  Charcot-Marie-Tooth disease type 2A2
FLAIR  Fluid attenuated inversion recovery
MCP  Middle cerebellar peduncle
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LGB  Lateral geniculate body
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