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Abstract 

Background Apolipoprotein E ε4 allele (APOE‑ε4) is the main genetic risk factor for late‑onset Alzheimer’s disease 
(AD) and may impact cognitive function also via other neuropathological lesions. However, there is limited evi‑
dence available from diverse populations, as APOE associations with dementia seem to differ by race. Therefore, we 
aimed to evaluate the pathways linking APOE‑ε4 to cognitive abilities through AD and non‑AD neuropathology 
in an autopsy study with an admixed sample.

Methods Neuropathological lesions were evaluated following international criteria using immunohistochemistry. 
Participants were classified into APOE‑ε4 carriers (at least one ε4 allele) and non‑carriers. Cognitive abilities were 
evaluated by the Clinical Dementia Rating Scale sum of boxes. Mediation analyses were conducted to assess the indi‑
rect association of APOE‑ε4 with cognition through AD‑pathology, lacunar infarcts, hyaline arteriosclerosis, cerebral 
amyloid angiopathy (CAA), Lewy body disease (LBD), and TAR DNA‑binding protein 43 (TDP‑43).

Results We included 648 participants (mean age 75 ± 12 years old, mean education 4.4 ± 3.7 years, 52% women, 69% 
White, and 28% APOE‑ε4 carriers). The association between APOE‑ε4 and cognitive abilities was mediated by neu‑
rofibrillary tangles (β = 0.88, 95% CI = 0.45; 1.38, p < 0.001) and neuritic plaques (β = 1.36, 95% CI = 0.86; 1.96, p < 0.001). 
Lacunar infarcts, hyaline arteriosclerosis, CAA, LBD, and TDP‑43 were not mediators in the pathway from APOE‑ε4 
to cognition.

Conclusion The association between APOE‑ε4 and cognitive abilities was partially mediated by AD‑pathology. 
On the other hand, cerebrovascular lesions and other neurodegenerative diseases did not mediate the association 
between APOE‑ε4 and cognition.
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Introduction
The apolipoprotein E gene ε4 allele (APOE-ε4) is the 
main genetic risk factor for late-onset Alzheimer’s 
disease (AD) [1]. Compared to the APOE-ε3/ε3 geno-
type, having at least one APOE-ε4 allele increases the 
risk of cognitive decline and dementia [2–4]. Accord-
ing to previous evidence, the association of APOE-ε4 
with cognition and dementia seems to be mediated by 
an increased burden of AD-pathology: neurofibrillary 
tangles (NFT) formed by hyperphosphorylated tau pro-
teins and neuritic plaques (NP) composed of β-amyloid 
peptides [5–7]. However, the APOE alleles are also 
associated with a higher risk of cerebrovascular lesions, 
including atherosclerosis, brain infarcts, hyaline arte-
riosclerosis, and cerebral amyloid angiopathy (CAA) 
[8–10]. In addition, APOE is related to non-AD neuro-
pathological alterations, such as Lewy body dementia 
(LBD) characterized by aggregates of the α-synuclein 
protein and limbic-predominant age-related TAR 
DNA-binding protein 43 (TDP-43) encephalopathy 
[10–15]. Thus, these lesions could mediate the APOE 
association with cognitive function.

Few population-based studies have investigated these 
pathways through cerebrovascular lesions and non-AD 
neuropathology using causal mediation approaches, 
which estimate direct and indirect effects considering 
the interactions between the exposure and the media-
tor [16]. APOE-ε4 was related to an increased risk of 
hippocampal sclerosis mediated by the burden of TDP-
43 pathology in an autopsy study with 1042 older adults 
[17]. In 17,244 participants from five longitudinal stud-
ies, the APOE-ε4 allele was associated with a higher AD 
risk through their indirect effects on increasing body 
mass index (BMI) [18]. Recently, it was demonstrated 
that the association of APOE-ε4 with lower late-life 
global cognitive scores was mediated by a higher bur-
den of AD-pathology, as well as the presence of CAA, 
LBD, and TDP-43 in 1,671 participants, while cerebro-
vascular lesions were not mediators of the association 
between APOE alleles and cognitive function  [19].

Most studies so far included predominantly White 
participants with high educational attainment. How-
ever, studies suggested that the association between 
APOE-ε4 and cognition may differ by race, highlight-
ing the need to understand the pathways through which 
APOE influences cognitive function in diverse popula-
tions [3, 4]. Therefore, we aimed to evaluate the direct 
and indirect effects of neurodegenerative and cerebro-
vascular lesions on the association between APOE 
alleles and cognitive abilities by using data from a com-
munity-based sample of  ethnically diverse participants.

Methods
Participants
We used data from the Biobank for Aging Studies of 
the University of Sao Paulo Medical School [20]. In Sao 
Paulo, individuals who die from a non-traumatic death 
of an unknown cause are submitted to an autopsy exam. 
Autopsies were performed at the Sao Paulo Autopsy Ser-
vice, and the brains were donated by the deceased’s next 
of kin (NOK) [20, 21]. The NOK signed an informed con-
sent allowing the brain collection and provided sociode-
mographic and clinical information about the deceased. 
The local ethics committee approved this study.

We included individuals aged 50  years or older at the 
time of death whose NOK had at least weekly contact 
with the deceased in the six months before death and 
with complete APOE data (n = 1151). Then, we excluded 
individuals with missing data for neuropathological vari-
ables (n = 482) and for sociodemographic and clinical 
information (n = 21). We analyzed data from 648 partici-
pants (Additional file 1: Fig. S1).

Neuropathological assessment
Brains were obtained within 24 h after death (mean post-
mortem interval of 14.2 ± 4.8  h), and the brainstem and 
cerebellum were removed before further processing, after 
which the brain was separated into two hemispheres. 
Selected areas were collected from the right hemisphere 
and frozen at − 80  °C for future studies. The brainstem, 
left hemisphere of the brain, and the cerebellum were 
fixed in 4% buffered paraformaldehyde. The fixation time 
is 15 days, but in exceptional cases, this time can range 
from 15 to 45  days, based on the quality assessment of 
the brain fixation after 15 days by our neuropathologists. 
Then, the fixed hemisphere was sectioned into the follow-
ing areas: middle frontal gyrus, middle and superior tem-
poral gyri, angular gyrus, superior frontal and anterior 
cingulate gyrus, visual cortex, hippocampal formation at 
the level of the lateral geniculate body, amygdala, basal 
ganglia at the level of the anterior commissure, thalamus, 
midbrain, pons, medulla oblongata, and cerebellum [21]. 
All brain regions were embedded in paraffin, sectioned 
into 5-μm-thickness sections, and stained with hematox-
ylin and eosin. To analyze the neuropathological lesions, 
we performed immunohistochemistry with antibodies 
against β-amyloid (4G8, 1:10.000; BioLegend #800,701), 
phosphorylated tau (AT8, 1:400; Invitrogen MN1020), 
TDP-43 (1:500, BioLegend #829,901), and α-synuclein 
(LB509, 1:500; Sigma-Aldrich MABN824) in the selected 
brain regions (Additional file 1: Table S1)  [20, 21].

AD-pathology was scored using the Braak and Braak 
staging system for NFT and the CERAD criteria for NP. 
The Braak and Braak staging is a system to measure the 
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progression of NFT into six stages. The NFT changes 
start in the transentorhinal regions (stage I) and spread 
to the cornu ammonis (CA) 1 of the hippocampus (stage 
II). As the pathology progresses, the lesions extend to 
the subiculum, basal ganglia, and amygdala (stage III); 
and accumulate in the isocortex, mainly the temporal 
region (stage IV). Then, the lesions extend widely into the 
whole CA region, and the thalamus and hypothalamus 
are committed (stage V). Finally, the pathology reaches 
the occipital lobe and the fascia dentata of the hippocam-
pus (stage VI) [22, 23]. According to these stages, NFT 
accumulation was categorized into 0-II, III-IV, or V-VI 
[24]. CERAD criterion is a semiquantitative approach 
that categorizes the frequency of neocortical NP into the 
following stages: none (0), sparse (I), moderate (II), and 
frequent (III) [25]. We categorized these frequencies into 
none or sparse, moderate, and frequent.

LBD was classified according to the presence of 
α-synuclein using the Braak staging for Parkinson’s dis-
ease (PD) [26]. Therefore, we used the term LBD for all 
diseases related to Lewy bodies, such as PD, PD demen-
tia, and Lewy body dementia. The diagnosis of LBD was 
considered when the Braak staging for PD ≥ III [21, 27]. 
The presence of TDP-43 was determined using immu-
nostaining to detect TDP-43 in the hippocampal forma-
tion and amygdala.

Cerebrovascular lesions were evaluated microscopically 
using hematoxylin and eosin-stained slides in all sampled 
areas. Lacunar infarcts were registered by topography, 
stage, size, and number. The presence of lacunar infarcts 
was defined as one or more infarcts measuring ≤ 1.5 cm 
in any of the regions of the brain described above. Hya-
line arteriosclerosis was classified according to the pres-
ence of moderate and/or severe microvascular changes 
in three or more cortical regions. The evaluation of CAA 
was made according to the localization, as well as the 
severity and presence of capillary amyloid deposition. 
CAA was classified as present when it was widespread in 
the parenchyma in at least three different cortical areas 
[21].

Cognitive assessment
Cognitive abilities were evaluated using the Clinical 
Dementia Rating (CDR) [28]. CDR is a semistructured 
interview that is applied to the informant and the partici-
pant. However, we used only the informant section of the 
CDR. The NOK, who had at least weekly contact with the 
deceased during the six months prior to death, answered 
questions regarding the cognitive abilities of the deceased 
three months before death to avoid the cognitive changes 
that are usually present next to the moment of death. 
Cognitive abilities were assessed in six domains (memory, 
orientation, judgment and problem-solving, community 

affairs, home, hobbies, and personal care). Each domain 
is scored on a five-point scale used to rate dementia 
severity: normal cognition (CDR = 0); cognitive impair-
ment (CDR = 0.5); mild dementia (CDR = 1); moderate 
dementia (CDR = 2); and severe dementia (CDR = 3). The 
global CDR score is obtained through an algorithm [28]. 
We also computed the CDR sum of boxes (CDR-SOB), 
which is the sum of the scores in each domain that ranges 
from 0 to 18, with higher scores indicating worse cogni-
tive abilities [29].

APOE Genotyping
DNA samples were obtained from blood or brain tis-
sue. The APOE polymorphism was genotyped using 
either Illumina OmniExpress 700  k microarray or Illu-
mina BeadXpress custom genotyping panel. APOE com-
mon alleles (ε2, ε3, and ε4) were genotyped directly by 
real-time polymerase chain reaction (PCR) using allele-
specific amplification or after imputation of rs429358 to 
compose haplotypes [30].

Other variables
Other study variables were age at death, sex, education, 
and race, categorized as White, Black, Brown (admixed 
of Black and White), and Asian. Black and Brown par-
ticipants were analyzed as Black. We also collected infor-
mation on previous diagnoses of diabetes, hypertension, 
dyslipidemia, and heart disease (cardiac failure and/or 
coronary artery disease). The NOK reported all the soci-
odemographic and clinical variables except BMI, which 
was calculated using the measured height and weight 
before the autopsy exam. Physical activity was defined as 
present when the NOK reported that the deceased had 
regularly engaged in physical activities, such as house-
hold chores, walking, and practicing physical exercises. 
Smoking status and alcohol use were also reported by 
the NOK and classified as never, current, or former use. 
Age and sex were obtained from government-issued 
documents.

Statistical analysis
Descriptive statistics were presented as mean and stand-
ard deviation (SD) for quantitative variables and rela-
tive frequencies for categorical variables. Participants 
were categorized into APOE-ε4 carriers and non-car-
riers according to the presence of at least one ε4 allele. 
Then, we compared the sociodemographic and clinical 
characteristics of the two groups (APOE-ε4 carriers vs. 
non-carriers) using the unpaired t-test for quantitative 
variables and the Chi-squared or Fisher’s exact test for 
categorical variables.

Estimates of the mediation models were calculated 
based on the product-of-coefficients method [16]. 
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According to this approach, the direct effect represents 
the difference in the outcome when the exposure changes 
(APOE-ε4 carriers vs. non-carriers) and the mediator is 
held constant. The indirect effect represents the expected 
difference in the outcome when the mediator changes 
in the function of the values of the APOE categories 
(APOE-ε4 carriers vs. non-carriers) while the exposure 
(APOE categories) is held constant. In addition, the 
mediation model also estimated the total effect and the 
mediated proportion. The total effect is the effect of the 
APOE-ε4 on cognitive abilities, summing the direct and 
indirect effects. Mediated proportion represents the pro-
portion of the total effect that is due to the APOE allele’s 
effect on cognitive abilities through the mediators. [16, 
31]

The causal mediation analysis was conducted using the 
‘mediate’ function of the R package mediation [32]. First, 
we fitted the mediator and outcome models separately. 
In the mediator models, each of the mediators (lacunar 
infarcts, hyaline arteriosclerosis, CAA, TDP-43, LBD, 
Braak score, and CERAD score) was entered as the out-
come variables, and the APOE categories as the predictor 
in a linear regression model adjusted for sociodemo-
graphic (age, sex, race, and education) and clinical factors 
(hypertension, diabetes, dyslipidemia, heart disease, BMI, 
alcohol, smoking, and physical activity). In the outcome 
model, the CDR-SOB was the outcome variable, and the 
APOE categories and the mediators were predictors in a 
linear regression model adjusted for the set of confound-
ers described above. Then, we entered these two models 
as arguments of the mediate function that decomposed 
the associations between APOE alleles and CDR-SOB 
into direct and indirect paths represented by the aver-
age direct effects (ADE) and the average causal media-
tion effects (ACME), respectively (Fig. 1). We verified the 
assumptions of the linear regression models, including 
normal quantile–quantile (Q–Q) plots and histograms 
of the residuals. In addition, the mediation effects were 
estimated with the default quasi-Bayesian Monte Carlo 
method and bootstrapping with 1000 simulations. We 
considered an alpha level of 5% in two-tailed tests.

Results
In 648 participants, the mean age was 74.7 ± 12.0  years 
old, the mean education was 4.4 ± 3.7  years, 52% were 
women, and 69% were White. Subjects with at least one 
APOE-ε4 allele (n = 182) had fewer years of education 
(p = 0.01) and were more frequently Black (p = 0.001) 
than the APOE-ε4 non-carriers (n = 466) (Table 1).

APOE-ε4 carriers had a higher frequency of cognitive 
impairment (CDR score ≥ 0.5) (Fig. 2A), higher scores of 
Braak staging for NFT (Fig. 2B) and CERAD score for NP 
(Fig. 2C), and a higher frequency of CAA (Fig. 2D) than 

APOE-ε4 non-carriers. However, no differences were 
found between the APOE groups for lacunar infarcts, 
hyaline arteriosclerosis, TDP-43, and LBD (Table 1).

Neuropathological lesions as mediators of the association 
between apolipoprotein E gene and cognitive abilities
Participants with the APOE-ε4 allele had higher CDR-
SOB scores mediated by a higher burden of NFT (Braak 
score) and NP (CERAD score) in mediation analysis 
adjusted for age, sex, race, and education (Fig. 3, Panels 
A and B; Table  2). Forty percent and 62% of the asso-
ciation between APOE-ε4 and cognitive abilities were 
explained by the burden of NFT and NP measured 
respectively by Braak and CERAD scores. TDP-43, lacu-
nar infarcts, hyaline arteriosclerosis, and CAA did not 
mediate the association between APOE-ε4 and cognitive 
abilities (Table 2). The direct pathway between APOE-ε4 
and cognition remained significant in the presence of all 
mediators except TDP-43 (p = 0.07) and NP (p = 0.13), 
indicating that the APOE-ε4 allele can influence cogni-
tion through other paths independent of NFT, NP, TDP-
43, lacunar infarcts, hyaline arteriosclerosis, and CAA 
(Table 2). Similar results were found in mediation analy-
sis adjusted for sociodemographic and clinical factors 
(Additional file 1: Table S2).

Discussion
In an admixed sample, NFT and NP mediated, respec-
tively, 40% and 62% of the association between the pres-
ence of at least one APOE-ε4 allele and poor cognitive 
abilities. Cerebrovascular lesions and non-AD neuro-
pathologies were not significant mediators on the path-
way linking APOE-ε4 to cognitive abilities.

Fig. 1 Directed acyclic graph showing the conceptual causal 
mediation model of the associations between the apolipoprotein 
E gene ε4 allele (APOE‑ε4) and cognitive abilities decomposed 
into a direct (blue line) and indirect pathway (red line). Confounder 
variables were age, sex, race, education, hypertension, diabetes, 
dyslipidemia, heart disease, body mass index, alcohol use, smoking, 
and physical activity
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Our results agree with prior studies that have found an 
association of APOE-ε4 with increased β-amyloid pathol-
ogy, tau neurotoxicity, and cognitive impairment. How-
ever, the majority of these studies did not use mediation 
approaches and included non-diverse populations [7, 19, 
33, 34]. Results from 272 Koreans who underwent PET 
scans showed that APOE-ε4 carriers had an increased 

burden of β-amyloid in cortical regions and progres-
sive accumulation of tau pathology in parietal, occipi-
tal, lateral, and medial temporal cortices than APOE-ε4 
non-carriers [34]. In addition, the interaction between 
APOE-ε4 and higher levels of tau pathology evaluated 
by positron emission tomography was associated with 
memory impairment independently of the burden of 

Table 1 Sociodemographic and clinical characteristics of the sample (n = 648)

a Student’s t-test. bChi-square test. cFisher’s exact test

SD Standard deviation, CDR Clinical dementia rating. CERAD Consortium to establish a registry for Alzheimer’s disease. TDP-43 TAR DNA-binding protein 43. Missing 
data were excluded for analyses with TDP-43 (*n = 310) and Lewy body disease (**n = 617)

Variable Overall (n = 648) APOE-ε4 non-carriers 
(n = 466)

APOE-ε4 carriers 
(n = 182)

p

Age (y), Mean ± SDª 74.7 ± 12.0 74.5 ± 12.0 75.0 ± 11.5 0.62

Education (y), Mean ± SDª 4.4 ± 3.7 4.6 ± 3.8 3.7 ± 3.4 0.01

Sex (%)b

  Female 52.3 52.6 51.6 0.90

Race (%)c 0.001

  White 68.5 72.1 59.3

  Black 28.7 24.7 39.0

  Asian 2.8 3.2 1.7

Hypertension (%)b 65.1 63.9 68.1 0.36

Diabetes (%)b 28.9 30.3 25.3 0.25

Dyslipidemia (%)b 9.7 9.23 11.0 0.59

Heart disease (%)b 31.3 31.8 30.2 0.78

Stroke (%)b 14.2 14.4 13.7 0.93

BMI (kg/m2), Mean ± SDª 23.2 ± 5.0 23.3 ± 5.1 23.1 ± 5.0 0.60

Physical inactivity (%)b 51.2 49.4 56.0 0.15

Smoking (%)b 0.76

  Never 49.1 48.3 51.1

  Current 19.8 20.4 18.1

  Former 31.2 31.3 30.8

Alcohol use (%)b 0.94

  Never 59.1 58.8 59.9

  Current 23.0 23.0 23.1

  Former 17.9 18.2 17.0

CDR ≥ 0.5 (%)b 30.7 26.4 41.8  < 0.001

Braak & Braak score (%)b  < 0.001

  0‑II 59.3 63.1 49.5

  III‑IV 27.9 27.0 30.2

  V‑VI 12.8 9.9 20.3

CERAD score (%)b  < 0.001

  None or Sparse 71.8 78.3 54.9

  Moderate 15.6 13.9 19.8

  Frequent 12.7 7.7 25.3

TDP‑43 (%)b* 12.3 11.6 14.3 0.67

Lewy body disease (%)b** 12.8 12.7 13.1 1.00

Lacunar Infarcts (%)b 11.6 10.3 14.8 0.14

Hyaline arteriosclerosis (%)b 21.1 21.9 19.2 0.52

Cerebral Amyloid Angiopathy (%)b 7.1 4.5 13.7  < 0.001
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β-amyloid in 297 participants without dementia from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database [6]. In another study, the presence of APOE-ε4 
and high levels of plasma p-tau 181 was associated with 
poor cognitive performance among 630 older individuals 
without dementia from the ADNI database, independ-
ent of the burden of β-amyloid pathology [7]. Moreover, 
having at least one APOE-ε4 allele was also associated 
with a high risk of AD in 267 Catholic sisters included in 
the Nun Study. In addition, the severity of NP and NFT 
included as covariates in the regression model were also 
independent predictors of AD. However, similarly to our 
findings, cerebrovascular risk factors, such as macro and 
microinfarcts and atherosclerosis in the Circle of Willis, 
were not significant predictors of cognitive impairment 
[5].

One prior study using mediation analysis to evaluate 
the indirect pathway from which APOE alleles impact 
late-life cognitive impairment via cerebrovascular 
lesions, AD-pathology, and non-AD neuropathologies 
was conducted using autopsy data from 1671 individuals 
who had a different sociodemographic profile compared 
to our sample (93.2% of APOE-ε4 carriers were White 
and had a mean education of 16.8  years). In this study, 
AD-pathology also mediated the association between 
APOE-ε4 and late-life cognitive impairment. In addition, 
the association between APOE-ε4 and cognition was 
also mediated through LBD, TDP-43, and CAA, but only 

Fig. 2 Associations of the Apolipoprotein E gene ε4 allele (APOE‑ε4) with Clinical Dementia Rating (CDR) and neurodegenerative lesions. 
Compared to APOE ε4 non‑carriers, APOE‑ε4 carriers had A more cognitive impairment (CDR = 0.5) and probable dementia (CDR ≥ 1) (p < 0.001), 
B higher frequency of Braak staging ≥ III (p < 0.001), C moderate and frequent neuritic plaques (p < 0.001), and D cerebral amyloid angiopathy 
(p < 0.001). Chi‑square tests were used for all comparisons

Fig. 3 Estimates (points) and 95% confidence intervals for the direct 
and indirect effects through neurodegenerative lesions 
of the association between Apolipoprotein E gene ε4 allele (APOE‑ε4) 
and Clinical Dementia Rating sum of boxes (CDR‑SOB). A The Braak 
staging for neurofibrillary tangles (NFT) and B the Consortium 
to Establish a Registry for Alzheimer’s Disease (CERAD) criteria 
for neuritic plaques (NP) were significant mediators of the association 
between APOE‑ε4 and cognitive abilities (p < 0.001). Direct paths 
remained significant in the model with the Braak score (p = 0.002) 
but were not significant when the CERAD score was entered 
as a mediator (p = 0.13)
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among those with clinical dementia by the time of death. 
Cerebrovascular lesions were not significant mediators, 
and the protective effects of the APOE-ε2 allele against 
dementia were mediated only by the AD-pathology [19].

According to these findings from different populations, 
the APOE allele association with cognition is probably 
mainly via AD-pathology [5, 17, 18, 35, 36]. APOE-ε4 
enhanced the burden of oligomeric β-amyloid at the syn-
apse, which in turn is associated with synapse shrinking 
and loss, a known cause of the cognitive decline in AD 
[33]. Furthermore, APOE-ε4 has been related to reduced 
β-amyloid clearance and tau spreading [34, 36]. The 
clearance of β-amyloid from the brain is a critical pro-
cess for maintaining cognitive function, and impairment 
of this process has been considered one of the main links 
between APOE-ε4 and AD [37]. However, recent data 
showed that an old woman with presenilin 1 mutation 
(PSEN1-E280A) and APOE3 Christchurch mutation in 
homozygosis had only mild cognitive impairment in the 
presence of a high burden of β-amyloid in the brain, but 
a very low level of tau pathology when compared with 
other cases with this presenilin mutation [38]. This find-
ing brings doubt to the hypothesis of the significance of 
the relationship between reduced β-amyloid clearance in 
AD associated with APOE-ε4.

In addition, experimental studies with animals suggest 
that β-amyloid and tau are associated with blood ves-
sel dysfunction and blood–brain-barrier (BBB) damage, 
which could facilitate the entrance of neurotoxic plasma-
derived components into the brain [39]. In humans, BBB 
disruption is also related to cognitive dysfunction [40]. 
These mechanisms could explain the association between 
APOE-ε4 and worse cognitive abilities via the NFT and 
NP.

While our findings did not reveal an indirect asso-
ciation between APOE alleles and cognitive abilities via 
non-AD-related lesions, autopsy studies suggest that the 
APOE-ε4 allele is associated with an increased burden of 
α-synuclein, which is a pathological hallmark of LBD [41, 
42]. One prior study also found an association between 
APOE and hippocampal sclerosis through TDP-43 [17, 
18]. Future studies with larger samples will be important 
to confirm the underlying mechanisms linking APOE to 
cognition through these non-AD neuropathologies.

Although APOE alleles are related to lipid metabolism, 
atherosclerosis, inflammation processes, and oxidative 
stress, prior studies have not found mediation effects 
of cerebrovascular lesions on the relationship of APOE 
alleles with cognition, which is in line with our results [5, 
19, 43, 44].

Table 2 Decomposition of the total, direct, and indirect effects through neurodegenerative and cerebrovascular lesions of the 
association between Apolipoprotein E gene ε4 allele (APOE‑ε4) and cognitive abilities (n = 648)

Mediation analysis adjusted for age, sex, race, and education

APOE groups: Participants with at least one APOE-ε4 allele vs. APOE-ε4 non-carriers (reference group)

Outcome: Cognitive abilities measured by the clinical dementia rating sum of boxes

Total effect Direct effect Indirect effect Proportion mediated

Estimate (95% 
CI)

p Estimate (95% 
CI)

p Estimate (95% 
CI)

P Estimate (95% CI) p

Neurodegenerative 
mediators

  Neurofibrillary tan‑
gles (n = 648)

2.21(1.20; 3.29)  < 0.001 1.33(0.42; 2.38) 0.002 0.88(0.45; 1.38)  < 0.001 0.40(0.21; 0.70)  < 0.001

  Neuritic plaques 
(n = 648)

2.21(1.10; 3.24)  < 0.001 0.85( − 0.26; 1.94) 0.13 1.36(0.86; 1.96)  < 0.001 0.62(0.35; 1.22)  < 0.001

  TDP‑43 (n = 310) 1.35( − 0.04; 2.82) 0.06 1.25( − 0.13; 2.63) 0.07 0.10( − 0.16; 0.52) 0.50 0.07( − 0.35; 0.54) 0.52

  Lewy bodies disease 
(n = 617)

2.04(0.97; 3.11)  < 0.001 2.03(1.00; 3.08)  < 0.001 0.01( − 0.12; 0.17) 0.92 0.003( − 0.07; 0.08) 0.92

Cerebrovascular media‑
tors

  Lacunar infarcts 
(n = 648)

2.21(1.18; 3.31)  < 0.001 2.12(1.11; 3.23)  < 0.001 0.09( − 0.05; 0.26) 0.21 0.04( − 0.03; 0.13) 0.21

  Hyaline arteriosclero‑
sis (n = 648)

2.21(1.13; 3.24)  < 0.001 2.28(1.23; 3.33)  < 0.001  − 0.07( − 0.22; 
0.05)

0.25  − 0.03( − 0.12; 0.02) 0.25

  Cerebral Amyloid 
Angiopathy (n = 648)

2.21(1.13; 3.29)  < 0.001 2.08(0.93; 3.22)  < 0.001 0.12( − 0.07; 0.35) 0.20 0.06( − 0.03; 0.20) 0.20
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Finally, we need to consider some limitations of our 
study. Although we applied a causal mediation approach 
to evaluate the indirect and direct associations of APOE 
alleles with cognitive abilities, we used cross-sectional 
data unsuitable for causal inference. Longitudinal studies 
will be essential to confirm these causal pathways. More-
over, the frequency of APOE-ε2 alleles, as well as each of 
the six APOE genotypes (ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, 
ε4/ε4), was small, which preclude the use of individual 
genotypes in our analysis. Also, we had missing data for 
TDP-43, which may have brought imprecision to these 
estimations due to the small sample size. Furthermore, 
we used a dichotomous classification for LBD, TDP-43, 
and cerebrovascular pathologies, while the NFT and NPs 
were classified as ordinal variables using established stag-
ing systems. Although the binary classifications for LBD, 
TDP-43, and cerebrovascular pathologies were based 
on their strong association with cognitive abilities, the 
absence of mediation effects between APOE and these 
lesions could be due to these dichotomous classifications. 
In addition, although our Biobank has implemented the 
ABC scoring system for the neuropathologic assessment 
of AD [45], most cases included in this study did not have 
this information.

On the other hand, we used autopsy material from an 
admixed sample of a low-to-middle-income country with 
many people with low educational attainment. Moreo-
ver, the Biobank for Aging Studies is the largest in Latin 
America, with a community-based sample with partici-
pants with different levels of dementia severity. These 
characteristics allowed us to compare our findings with 
previous results on less diverse and higher educated 
populations.

Conclusion
The association between the APOE-ε4 allele and cogni-
tive abilities was mediated by the burden of NFT and 
NP, the hallmarks of AD. Non-AD neurodegenerative 
and cerebrovascular lesions did not mediate the pathway 
linking APOE to cognition. These findings shed light on 
pathological mechanisms that may explain the relation-
ship between APOE-ε4, the main genetic risk factor for 
late-onset AD, and cognitive impairment in an ethnically 
diverse population and confirm previous results observed 
in other studies with mainly White participants. In addi-
tion, it provides evidence to support future disease-
modifying drug development targeting APOE-ε4, which 
seems to modulate biological processes associated with 
key AD neuropathological markers.
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