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The airbag problem–a potential culprit for
bench-to-bedside translational efforts: relevance
for Alzheimer’s disease
Dimitrije Krstic*† and Irene Knuesel†
Abstract

For the last 20 years, the “amyloid cascade hypothesis” has dominated research aimed at understanding,
preventing, and curing Alzheimer’s disease (AD). During that time researchers have acquired an enormous
amount of data and have been successful, more than 300 times, in curing the disease in animal model systems
by treatments aimed at clearing amyloid deposits. However, to date similar strategies have not been successful
in human AD patients. Hence, before rushing into further clinical trials with compounds that aim at lowering
amyloid-beta (Aβ) levels in increasingly younger people, it would be of highest priority to re-assess the initial
assumption that accumulation of Aβ in the brain is the primary pathological event driving AD. Here we question
this assumption by highlighting experimental evidence in support of the alternative hypothesis suggesting that
APP and Aβ are part of a neuronal stress/injury system, which is up-regulated to counteract inflammation/oxidative
stress-associated neurodegeneration that could be triggered by a brain injury, chronic infections, or a systemic
disease. In AD, this protective program may be overridden by genetic and other risk factors, or its maintenance may
become dysregulated during aging. Here, we provide a hypothetical example of a hypothesis-driven correlation
between car accidents and airbag release in analogy to the evolution of the amyloid focus and as a way to offer a
potential explanation for the failure of the AD field to translate the success of amyloid-related therapeutic strategies
in experimental models to the clinic.
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Introduction
At the time of its wording in 1991/92, the “amyloid cas-
cade hypothesis” [1] provided a logical explanation for
the distinct amyloid-beta (Aβ) plaque pathology in pa-
tients diagnosed with Alzheimer’s Disease (AD). This
hypothesis was supported by the direct link between AD
and dominant mutations in either the amyloid precursor
protein (APP) or enzymes that are involved in the pro-
duction of Aβ peptides, such as presenilin 1 or 2 (PS1/2)
[2-5]. Subsequently, numerous in vitro studies supported
a toxic effect of Aβ peptides and by that “approved”
its causative role in the disease etiology. However, mice
that selectively overproduce Aβ peptides (BRI2-Aβ1-42)
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and develop plaque pathology display no signs of pro-
gressive cognitive impairments or neurodegeneration
[6,7]. In addition, knock-in strategies to induce genetic
mutations in APP or PS1 in rodents have been proven
not to be sufficient to evoke AD-like phenotypes [8,9].
The development of certain features of the disease in
animal models depends on transgene overexpression
[10,11] and combinations of mutations [12-14]. Only
very strong promoters and the presence of multiple mu-
tations in mice, a combination never occuring in AD
patients, triggers most of the neuropathological and
behavioral phenotypes observed in humans, albeit in
very young animals [15]. Nevertheless, transgenic-AD
animals became state-of-the art tools in the commu-
nity, and Aβ remained the proposed principle toxic
and causative agent of the disease; first as monomer,
then as an insoluble aggregate, followed by a soluble
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oligomer, and now a combination of all of these forms
[16-18].

Review
Aβ–an acute-phase peptide
However, despite its proposed toxic/causative role in
AD, physiological/protective roles for Aβ peptides have
been described [19-21]. In addition to these neuro-
trophic effects of Aβ and its neurogenic effect on adult
neural stem cells [22], Aβ peptides have been shown
to stimulate synaptic function at physiological, pico-
molar, levels [23]. Increases in synaptic activity, through
NMDA receptor activation, induce Aβ production [24],
which at high, nanomolar, concentration potently de-
presses synaptic activity [23]. Hence, Aβ might serve
as a suitable synaptic guardian against excitotoxicity.
Furthermore, Aβ peptides capture metal ions such as
Zn, Fe, and Cu, potentially reducing oxidative stress to
neurons [25]. This is consistent with the notion that
increased oxidative damage is an early feature in AD
development [26-29] and with findings that subsequent
increases in Aβ accumulation correlates with the de-
crease in oxidative stress [27,30]. Similarly, physiological
levels of Aβ peptides in plasma and cerebrospinal fluid
(CSF) are reported to protect circulating lipoproteins
from oxidation [31].
It has been also demonstrated that Aβ possesses anti-

inflammatory [32] and anti-microbial functions [33].
This potential immune function of Aβ is in line with
studies showing induction of APP and Aβ production in
brains of non-transgenic mice infected with C. pneumo-
nia [34] or Herpes simplex virus type 1 [35]. One should
also keep in mind that although APP production in the
brain is most abundant in neurons, astrocytes also pro-
duce APP and Aβ and this production is elevated by
pro-inflammatory cytokines [36]. Interestingly, as has
been noted in the brain, stimulation of the peripheral
immune system induces expression of APP/Aβ in both
T-lymphocytes [37] and CD14-positive mononuclear
phagocytes [38]. Moreover, in humans correlations be-
tween neurospirochetosis and AD [39], and between
periodontal infections and AD [40] are well established.
In addition, young individuals exposed to elevated air
pollution levels show neuroinflammatory responses with
a significant induction of Aβ1-42 at autopsy [41].
Hence, in the context of Alzheimer’s disease progres-

sion, Aβ accumulation and plaque formation at sites of
axonal swellings [42] and leakages [43,44] might be
interpreted as the brain’s strategy to constrain such in-
flammation/oxidative stress-inducing hot-spots. This
hypothesis is well in line with the observation that
Aβ plaques form over 24 hours [45], possibly as an
acute reaction to a burst or leakage of an axon as
suggested in [44]. In parallel, increases in Aβ or other
proteolytic fragments of APP at synaptic sites may
act to protect vulnerable neurons from glutamate-
mediated excitotoxicity [46].

APP–a guardian of axonal and synapse integrity
Important, away from the spot-light of Aβ-driven re-
search, endogenous functions of APP are also starting to
emerge [47]. Of specific interest are observations in APP
knock-out mice, which show relatively subtle phenotypes
[48] but high vulnerability to mechanical insults and low
neuroregenerative capacity [49]. The lack of APP expres-
sion in these animals is associated with enhanced sus-
ceptibility to kainic acid-induced epilepsy [50] and
elevated mortality following cerebral ischemia [51].
These findings are consistent with the idea that the
observed elevation of APP expression following trau-
matic brain injury [52-55], entorhinal cortex lesion
[56], induced ischemia [57-59], systemic infection with
a bacterial or a viral mimic [60,61], or administration
of pro-inflammatory cytokine interleukin 1 [62,63] is a
protective neuronal response to stress/injury, rather
than a pathological event leading to an overproduction
of Aβ. This is also well in line with the notion that
while Aβ1-42 levels increase, APP levels decrease with
advancing AD pathology [64]. In further support of
this idea, head injury in Drosophila induces an in-
crease in expression of Drosophila APP-Like Protein
(dAPLP), and mutant flies lacking dAPLP have signifi-
cantly higher mortality rates after injury than wild-type
flies [65], suggesting an evolutionarily conserved role
of APP in response to injury/stress. In rodents, double
knock-out of APP and APLP-1 induces severe struc-
tural and functional synaptic deficits [66], pointing to
the crucial role of APP family members in synapse
development and maintenance.
Interestingly, a recently discovered “protective” muta-

tion in APP (APPA673T) [67] results not only a delay of
the onset of AD, but also in better cognitive perform-
ance of AD patients that carry the mutation. Important,
this mutation leads not only to decreases in production
of Aβx-42, but also to a slight increase in levels of se-
creted APP ectodomain alpha (sAPPα) [67]. This is espe-
cially interesting as APP expression in aged animals is
crucial for induction of long-term potentiation (LTP)
and proper cognitive performance [68] and sAPPα was
shown to reverse the deficits observed in APP knock-out
mice [69].
In line with the hypothesis that impairments in axonal

integrity and axonal transport represent a key contribu-
ting factor in the development of AD [44,70], APP has
been shown to play a role in promoting kinesin-
mediated fast axonal transport [71]. In addition, both a
lack of APP [72] and an increase in proteolytic proces-
sing by γ-secretase [73] result in Aβ-independent [74]
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transport deficits. Together these findings suggest that
stressful or injurious conditions in which APP endoge-
nous functions are compromised, e.g. by a mutation in
APP or its secretases, axonal transport deficits and sub-
sequent synaptic loss may ensue. This view is supported
by positron emission tomography (PET) imaging in
human subjects in whom white matter atrophy and
synaptic disconnection were observed early in AD
pathogenesis [75-78]. Similarly, early white matter atro-
phy is also observed in women carrying the Apolipo-
protein E (ApoE) allele ε4 [79], the major genetic risk
factor for both familial and sporadic form of AD [80].
This is in agreement with the proposed endogenous
function of ApoE in neuronal response to stress and
injury [81,82].

Non-demented individuals with AD neuropathology
burden
Interestingly, approximately 25% of cognitively healthy
elderly people have Aβ plaque and tangle pathology [83],
sufficient to meet National Institute on Aging (NIA)-
Reagan criteria for AD [84-86]. According to the amy-
loid cascade hypothesis these individuals would have
developed dementia if they had lived longer, hence the
name “prodromal Alzheimer patients”. Nevertheless,
longitudinal cognitive tests in non-demented indivi-
duals above 90 years of age, but with high AD neuro-
pathology, showed no evidence of cognitive decline
three years before death [87]. Interestingly, while there
was extensive overlap in Aβ peptides profile in AD
patients and non-demented high pathology individuals
[88], the levels of APP and Aβ42 were higher in the
non-demented group [89]. In agreement with an anti-
inflammatory role of Aβ peptides [32] there was less
neuroinflammation in high-pathology non-demented indi-
viduals [90-92]. In addition, when compared to AD
patients, these high-pathology non-demented indivi-
duals showed higher levels of neuroprotective ApoE
and S100B, as well as angiogenic vascular endothelial
growth factor (VEGF) [89]. Such non-demented indi-
viduals may, therefore, be successful in maintaining
or recruiting additional protective pathways to fight
age-associated neuroinflammatory stress [93] and its
associated neurodegeneration [44]. If so, APP and Aβ
may play a significant role in this protection. This idea
is in line with a transcriptional profiling study, showing
that a decisive point in AD neuropathogenesis is the in-
duction of stress genes as a reaction of the brain to age-
associated changes in lipid metabolism and increasing
inflammatory stress [94].
While targeting inflammatory processes, as suggested

by some studies and epidemiological data [95,96], may
prove efficacious in preventing or delaying the develop-
ment of AD, these treatments failed to show a beneficial
effect in patients with symptomatic AD [97]. Hence, in
order to design therapeutics that would have efficacy in
already diagnosed, late-stage, AD patients we will have
to exploit as yet undiscovered factors or pathways
employed by the non-demented individuals, who exhibit
high levels of neuropatholgical change. In a search for
such protective factors, a recent genome-wide associ-
ation study identified three of the top ten hits as
single-nucleotide polymorphisms (SNPs) in the promoter
region of a gene encoding for the glycoprotein Reelin
[98]. Interestingly, Reelin is an extracellular signaling
molecule shown to (i) modulate LTP, (ii) be a strong sup-
pressor of Tau hyperphosphorylation, and (iii) modulate
APP processing (reviewed in [99]). Important, compared
to age-matched controls, Reelin levels are significantly
lower in AD patients already at early stages of the disease
[100,101], but in high-pathology non-demented indivi-
duals Reelin production is increased [98]. It was also
demonstrated that employing histone deacetylase 2
(HDAC) inhibitor following severe experimentally-induced
neurodegeneration virtually restored brain functiona-
lity [102]. This is specifically interesting since Reelin
promoter is known to be sensitive to epigenetic
changes [103]. Therefore, exploiting this and similar
pathways might be a promising avenue for develop-
ment of treatments for symptomatic AD patients.
However, we are afraid that the pursuit of strategies
other than those directly targeting Aβ may have been
hindered by the early and prolonged adherence to the
Amyloid theory.

The airbag problem–a hypothetical example
The idea that the observed increase in Aβ levels as well
as Aβ-containing senile plaques in AD patients is an
adaptive response of the brain to an underlying stress/
injury [44,94,104] has been put forward by a number of
scientists [105-108]. Yet, many researchers continue to
treat Aβ as the principle etiological agent in AD. While
some might argue that an Aβ protective versus toxic role
depends on the local concentration, it’s aggregation or
oligomerization status, or the context in which Aβ is
produced, we propose here an alternative possibility–
namely that the scientific community is being misled by
a seemingly overwhelming amount of literature that
supports the Aβ hypothesis.
The rationale for making this strong and provocative

statement against the amyloid hypothesis is easy to
understand if you imagine a scenario in which someone,
not knowing how a modern car works, is interpreting
the significant association of car accidents with the
presence of released airbags. Based on observations that
released airbags are consistently observed in crashed
cars, but never in intact cars, the airbag became the sus-
pect and possible initiating cause of the accidents.
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Reinforced by the discovery that in a small percentage of
car accidents (<1%) the spontaneous airbag release, due
to a manufacturing defect, actually caused the accidence,
the engineers design remote-controlled airbags to test
the effect of their release in moving cars. Not knowing
the real purpose of this protective device, the outcome
and interpretation of this experiment–all performed with
state-of-the-art technology, well-developed and executed
strategies, and proper statistics–is absolutely clear: the
airbag must be the cause. This strong evidence would
certainly attract many specialists from different fields to
investigate the airbag release mechanism in detail. They
will eventually succeed, perhaps after years of hard work
and accumulation of an overwhelming number of scien-
tific papers, by changing only one important part of the
release mechanism or installation of an airbag deploy-
ment preventer to hinder the experimentally induced
airbag-associated car accidents. Since such intervention
would prevent even small percentage of accidents caused
by manufacturing defects that lead to unprovoked airbag
deployment, the “airbag hypothesis” would become a
well-established theory. Nevertheless the production of
cars without airbags or removal of the airbags from all
existing cars would not decrease the number of accidents
in general-an obvious result if the real purpose of the air-
bag was known.
If we translate this hypothetical scenario to AD re-

search, it might provide the explanation for the lack of
translational success despite tremendous work and
money invested in the past 20 yearsa. We argue here that
the overwhelming data produced through the use of
transgenic overexpression models of AD, which are not
suitable for the understanding of the disease etiology,
led the scientific community down the garden path. We
would like to stress here, however, that the aim of this
alternative view is not to put down the hard work being
done by the AD-research community, but to encourage
“outside the box” thinking toward initiating an impor-
tant discussion and designing of future research direc-
tions–beyond Aβ. Finally, although we have focused in
this article only on APP and Aβ in the context of
Alzheimer’s disease, the implication of a potential “air-
bag problem” for bench-to-bedside translational efforts
is not restricted to research on this protein and its deri-
vatives nor to AD-research only.

Conclusions
Alzheimer’s disease (AD) represents one of the major
health-issues of modern society with no promising treat-
ment on the horizon. A potential problem underlying
the failure to treat AD in humans is the assumption that
senile plaques, the most obvious pathological hallmark
of the disease, and especially one of the plaque compo-
nents–Aβ peptide–represent the major driving force of
the disease. Here, we challenge this view (see the airbag
problem) and review experimental evidence in support
of the hypothesis that APP/Aβ belong to a stress/injury-
induced protective system of neurons. Hence, we suggest
that AD-associated mutations in APP as well as PS1/2
impair an endogenous–protective–function of these pro-
teins, which will in turn result in elevated neuronal vul-
nerability, diminution of membrane repair following
brain injury, and impairments in axonal transport and
axonal integrity when cellular stress becomes chronic. In
the context of late-onset AD, chronic inflammatory
stress to neurons would, with advancing age, override
this protective mechanism leading to the same patho-
logical changes as those observed at earlier age in fami-
lial AD cases. These impairments would cause synaptic
deterioration, neuronal degeneration, and ultimately de-
mentia. In line with this hypothesis and recognized
anti-inflammatory properties of Aβ oligomers, senile
plaques may represent an ‘aide de camp’ in the neu-
ronal battle against age-associated and inflammation-
driven neurodegeneration rather than the cause of
neuronal cell death. Finally, understanding the protec-
tive mechanism(s) in cognitively healthy elderly people
with high plaque and tangle burden, may hold a key for
the development of successful treatments for patients
already diagnosed with late-onset Alzheimer’s disease.

Endnote
aEstimate of more than 300 published animal model

drug trials is based on: Zahs KR, Ashe KH. ‘Too much
good news’-are Alzheimer mouse models trying to tell
us how to prevent, not cure, Alzheimer’s disease? Trends
Neurosci. 2010; 33(8) 381-9.
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