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Decreased neuroinflammation and increased
brain energy homeostasis following
environmental enrichment after mild traumatic
brain injury is associated with improvement in
cognitive function
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Abstract

Background: Persistent neuroinflammation and disruptions in brain energy metabolism is commonly seen in
traumatic brain injury (TBI). Because of the lack of success of most TBI interventions and the documented benefits of
environmental enrichment (EE) in enhancing brain plasticity, here we focused our study on use of EE in regulating
injury-induced neuroinflammation and disruptions in energy metabolism in the prefrontal cortex and hippocampus.
Adult male Wistar rats were used in the study and randomly assigned to receive either: mild TBI (mTBI) using the
controlled cortical injury model or sham surgery. Following surgery, rats from each group were further randomized to
either: EE housing or standard laboratory housing (CON). After 4 weeks of recovery, cognitive testing was performed
using the non-matching-to-sample and delayed non-matching-to-sample tasks. After completion of behavioral testing,
levels of the pro-inflammatory cytokines IL-1β and TNF-α and the anti-inflammatory cytokine IL-10 were measured. In
addition, levels of AMPK (adenosine monophosphate-activated protein kinase), phosphorylated AMPK and uMtCK
(ubiquitous mitochondrial creatine kinase) were assessed as measures of brain energy homeostasis.

Results: Our results showed that EE: (1) decreased the pro-inflammatory cytokines IL-1β and TNF-α and enhanced
levels of the anti-inflammatory cytokine IL-10 after mTBI; (2) mitigated mTBI-induced cognitive impairment; and (3)
attenuated mTBI-induced downregulation in pAMPK/AMPK ratio and uMtCK levels.

Conclusions: Our data demonstrated the potential of EE to modulate the persistent: (1) neuroinflammatory response
seen following mTBI, and (2) persistent disturbance in brain energy homeostasis. It is possible that through the
mechanism of modulating neuroinflammation, EE housing was able to restore the disruption in energy metabolism
and enhanced functional recovery after mTBI.
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Background
Traumatic brain injury (TBI) is of major public health
significance, affecting almost 1.7 million people in the
United States each year [1]. Globally, the incidence of TBI
is also increasing, particularly in developing countries
where road traffic accidents are on the increase as a resultRET
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of widespread motor vehicle use. Mild traumatic brain
injury (mTBI) comprises about 80% of all TBI cases and
most individuals exhibit disabilities associated with cog-
nitive problems [2]. Common cognitive impairments
seen in mTBI include difficulties in attention, episodic
memory, executive functions (such as higher-order plan-
ning, initiating and directing, monitoring, problem solving,
and inhibitory control), working memory, information-
processing speed, language functions, and visuospatial pro-
cessing that can last for months or even years [3]. Large
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transient increases in excitatory neurotransmitter efflux
[4] resulting in excitotoxicity, ionic imbalance, ATP deple-
tion, proteolysis, and oxidative stress [5] happens in the
acute phase of TBI. The complex array of responses to
injury can result in energy crisis that compromises the
capacity of the brain to cope with challenges, thus regula-
tion of energy homeostasis after TBI is a critical step in
maintaining brain function.
While the acute effects of mTBI can be devastating,

increasing evidence suggest that mTBI also initiates long-
term effects in some segment of survivors [6]. The acute
effects of mTBI stemming from the primary insult can
cause secondary injuries that can evolve over minutes to
days and even months after the initial traumatic event.
Secondary injury events such as neuroinflammation can
also cause neurodegeneration and persistent cognitive
impairment [7]. The neuroinflammatory process involves
the movement of activated microglial cells to the site of
injury in response to extracellular adenosine triphosphate
(ATP) released by the injured tissue [8-10]. The microglial
processes then fused to form an area of containment
between healthy and injured tissues, suggesting that micro-
glia may represent the first line of defense following TBI
[11]. However, when microglia become over-activated or
reactive they can induce detrimental neurotoxic effects by
releasing multiple cytotoxic substances, such as pro-
inflammatory cytokines (e.g. interleukin-1 beta and tumor
necrosis factor-alpha) and arachidonic acid metabolites
[12-14]. These reports suggest that clear beneficial effects
can be achieved if neuroinflammation is controlled in a reg-
ulated manner and for a defined period of time. However,
there is increasing number of evidence that chronic micro-
glial activation is present in most cases of TBI leading to
neuroinflammation that can persist for months or years
after injury [14,15].
To date, most interventions that target a specific patho-

logical consequence of mTBI have failed clinically. Thus,
it is possible that using an intervention with known gen-
eral effects on enhancing brain plasticity and resiliency
may be beneficial in mTBI and one such strategy is envi-
ronmental enrichment (EE). In general EE refers to condi-
tions that provide increased social, cognitive, and physical
stimulation [16,17]. Reports show that EE can exert posi-
tive effects on behavioral recovery after cerebral ischemia
[18-21], mild TBI [22-25], and neurodegenerative disor-
ders [26,27]. Even though the effects of EE in modulating
neuroinflammation is just beginning to be explored [28],
the impact of EE in modulating brain energy homeostasis
after mTBI has not been studied. Here we focused our
study on EE effects in regulating injury-induced neuroin-
flammation and disruptions in energy metabolism in the
prefrontal cortex and hippocampus, as these are the brain
regions commonly affected in mTBI. The main goal of the
study was to determine the effects of EE in attenuating the
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long-term consequences of mTBI relating to neuroinflam-
mation, alterations in brain energy metabolism, and cogni-
tive impairment. The rationale for examining long-term
effects in the present was based on the dearth of informa-
tion available in the persistent consequences of mTBI.

Methods
Animal model
Adult male Wistar rats were obtained from Harlan Labora-
tories (Madison, Wisconsin) weighing approximately 375
to 400 grams. Animals were housed in pairs in a pathogen-
free vivarium under controlled condition (temperature
22 ± 1°C and humidity 70 ± 5%) and a 14:10 hour light:
dark cycle was maintained. All animals were housed in
the same room so that temperature, humidity, and light-
ing conditions are similar for all groups. Animals had
free access to food (regular rat chow) and water deliv-
ered through an automated and filtered system. Animals
were also handled daily throughout the study so that they
could get acclimated to the research personnel thereby de-
creasing stress. Experiments started one week after arrival
of the animals from the breeder and all experimental pro-
tocols in this study were approved by the Institutional
Animal Care and Use Committee (University of Illinois at
Chicago) and in accordance with the National Institutes of
Health guidelines. All efforts were made to minimize ani-
mal distress and to reduce the number of animals used.

Mild traumatic brain injury
Following induction anesthesia with isofluorane inhalation
(1%), animals were placed in a Cunningham stereotaxic
frame (Stoelting, Wood Dale, IN) in a prone position and
stabilized using the ear bars and incisor bar. The head was
held in a horizontal plane with respect to the interaural
line. Throughout the procedure, continuous isofluorane
anesthesia was maintained at 2.5%, aseptic technique was
used and the rats’ body temperature was maintained at
37° ± 1°C using the feedback-regulated water heating pad.
Once the animals were fully anesthetized and the head
stabilized, a midline incision was made and the soft tissues
were retracted. Then two 10 mm diameter craniotomities
were made adjacent to the central suture, midway between
lambda and bregma. Injury was induced in one of the cra-
niotomies and the second one allowed for lateral move-
ment of the brain during injury. The dura matter was kept
intact over the cortex and injury was induced by striking
the left or right (ipsilateral) cortex with a pneumatic piston
with a 6 mm diameter tip at a rate of 4 m/sec, with
1.5 mm of compression. Velocity was measured using a
linear velocity displacement transducer. Any bleeding from
the skull during the craniotomy was controlled with bone
wax. After the injury, the scalp was closed with 6–0 silk
suture, anesthesia was discontinued, and the rat’s tem-
perature was maintained at 37° ± 1°C until recovery of
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locomotion. Sham animals were subjected to the same
anesthesia and craniotomy, but no cortical injury.
Animals were assessed every hour × 8 hours then daily x

one week, for postoperative complications such as excessive
weight loss [> 20% of preoperative body weight], bleeding,
seizures, and infection. Animals were euthanized immedi-
ately and excluded from the study when postoperative
complications occurred (n = 0). Liquid Tylenol was given
orally with drinking water at 200 mg/Kg after surgery for
48 hours as postoperative analgesia. Sluggishness, extreme
aversion to being touched, and weight loss were also
assessed as indication of persistent pain (n = 0).

Animal housing
Immediately upon recovery from anesthesia, rats were ran-
domly placed in either: enriched environment (EE) hous-
ing or paired housing (social controls). The rats remained
in their assigned housing condition throughout the dur-
ation of the study. Animals in the EE group (n = 9 mTBI
and n = 8 shams) were housed together in a sensory-rich
living condition (wire cage measuring 2 m × 1 m× 1.65 m)
consisting of a variety of objects as described previously
[19,29]. In addition, these rats were placed each day in an
open field (1.2 × 1.2 × 1.2 m) during the evening hours
with a novel arrangement of toys and objects and allowed
to explore for 30 minutes while the objects in the home
cage were being changed. Objects in both EE housing and
open field were changed daily to maintain novelty.
Animals assigned to the social control (CON) group

(n = 9 mTBI and n = 8 shams) were housed in pairs in
standard laboratory cages (16.5 × 22.5 × 13.5 cm). Although
rats in this group were able to observe ongoing activity of
the room, they did not receive any stimulation and contact
was limited to daily handling and routine cage changing.
Paired housing was used to control for the social inter-
action effect of the enriched environment.

Non-matching-to-sample and delayed-non-matching-to-
sample tasks
Behavioral testing was conducted 4 weeks after EE or
control housing and approximately 2 hours prior to the
onset of the dark cycle (this is close to the rats’ active
period) for a total of 9 days (including habituation) and
performance was recorded using the Ethovision XT®
v.8.5 video tracking program (Leesburg, VA). The non-
matching-to-sample task consisted of a series of paired
sample and test trials. At the beginning of each sample
trial, either black or white cylinder was suspended
directly above the submerged platform in the water
maze. In subsequent test trials, both cylinders were
present but the cylinder not present during the preced-
ing sample trial was suspended over the platform and
served as a cue for the location of the goal. Thus, if on a
given sample trial, the black cylinder cued the platform,
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and then on the succeeding test trial, the white cylinder
was used to cue the platform. The black and white cylin-
ders were selected as sample stimuli for each pair of trials
according to a semi-random schedule that ensured each
cylinder served as the sample stimulus on 50% of the trials
over the phase of the experiment. For each test trial, the
platform was moved to another quadrant with the non-
sample cylinder located directly above it. The sample
stimulus was moved to a different quadrant for each trial.
Based on a random schedule, the position of the sub-
merged platform was changed after each sample and test
trial to eliminate the use of spatial cues. All quadrants
were used equally for locating cues in the sample and test
trials and the platform was positioned randomly. The day
before testing, rats were allowed a habituation swim for
10 seconds without the submerged platform. The constant
water temperature in the pool and habituation swim
helped decrease animal stress associated with the task.
At the beginning of each sample trial, the rat was

placed in the pool at the same location (in the center of
the south-east quadrant), facing the wall of the pool, and
allowed to swim to the submerged platform under the
sample cylinder. The rat was allowed to remain on the
platform for 10 seconds. If the rat failed to find the plat-
form within 60 seconds, it was picked up and placed on
the platform for 10 second then removed and placed
under a heat lamp while the platform is moved and the
cylinders put in position for the test trial. The heat lamp
allowed for the rats to get dry before the test trial. Get-
ting the cylinders and platform ready for the test trial
took ≈ 10 seconds. Rats received five daily sessions and
each session consisted of four pairs of sample and test
trials. The day after completion of the non-matching-to-
sample task, rats were tested in the delayed non-matching-
to-sample task for three additional daily sessions. Each
session consisted of three paired trials, with intervals
of 60, 120, or 180 seconds between the sample and test
trials (the intervals do not include the 10 seconds re-
quired for repositioning the cylinders and platform).
The order of the delays varied each day according to a
random schedule.
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Tissue preparation
Rats were euthanized using CO2 asphyxiation the day
after behavioral testing, the brains removed, and the pre-
frontal cortex and hippocampus were manually dissected
then immediately placed in liquid nitrogen and kept
frozen until processed. The ipsilateral regions were an-
alyzed for cytokine levels (interleukin-1β and tumor ne-
crosis factor-α) and measures of brain energy homeostasis
such as AMPK (adenosine monophosphate-activated pro-
tein kinase) and uMtCK (ubiquitous mitochondrial creat-
ine kinase).
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Cytokine protein quantification
The concentration of IL-1β, TNF-α, and IL-10 protein
levels was determined using commercially available ELISA
assays. Briefly, 0.5 g of frozen tissues were homogenized
with a glass homogenizer in 1 ml buffer containing 1 moll/
liter phenylmethylsulfonyl fluoride, 1 mg/liter pepstatin A,
1 mg/liter aprotinin, and 1 mg/liter leupeptin in PBS
(pH 7.2) and centrifuged at 12,000 × g for 20 minutes at
4°C. The supernatant was collected and total protein
was determined by bicinchoninic acid (BCA) protein assay
reagent kit (PIERCE, Milwaukee, WI). Samples were used
for ELISA to determine IL-1β, TNF-α, and IL-10 protein
levels. The procedure was performed according to manu-
facturer’s specification using the Quantikine rat-specific
ELISA kits (R&D Systems, Minneapolis, MN) and the
color reaction was detected using the chromogen tetra-
methylbenzidine. Color reaction was stopped by an equal
volume of stop solution (provided by the manufacturer)
and read in a microplate reader (Bio-Tek, Winooski, VT)
at a wavelength of 450 nm (650-nm reference wavelength).
The color change was proportional to the concentration
of the cytokines measured and all samples measured were
within the range of the standard curve. This ELISA system
detects both natural and recombinant rat IL-1β, TNF-α,
and IL-10. Assays were sensitive to 5 pg/ml for IL-1β and
TNF-α, and 10 pg/ml for IL-10; the intra-assay and inter-
assay coefficients of variation were < 5% and < 10% for
TNF-α and IL-10, and < 6% and < 9% for IL-1β. Assays
were performed in triplicates and measurements were
averaged and used as one individual data point for statis-
tical analysis.

Western blot
To detect measures of brain energy homeostasis, 0.5 g of
frozen tissues was used in the Western blot procedure. Tis-
sues were homogenized and centrifuged at 25,000 × g for
20 minutes as previously described [18,30]. Aliquots from
the supernatant were removed for protein determination.
Protein concentration in samples was determined using the
BCA-Protein assay (Pierce, Rockford, IL). Equal amounts of
protein (40 μg) from each rat were loaded and separated by
SDS-PAGE gel electrophoresis in 8% - 16% acrylamide gra-
dient gels. The protein bands were electrophoretically
transferred to nitrocellulose membranes (Amersham,
Piscataway, NJ) stained with 0.5% Ponceau Red to visualize
total proteins, then destained. Non-specific binding sites
were blocked then nitrocellulose membranes were incu-
bated overnight at 4°C with gentle agitation in the following
primary antibodies: (1) monoclonal mouse anti-AMPK
(1:1000, Santa Cruz Biotechnology, Santa Cruz, CA); (2)
polyclonal rabbit anti-phosphorylated AMPK (1:1000, Cell
Signaling, Billerica, MA); (3) monoclonal mouse anti-
uMtCK (1:1000, Santa Cruz Biotechnology); (4) polyclonal
rabbit anti-β-actin (1:2000, Santa Cruz Biotechnology). The
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secondary antibodies used were horseradish peroxidase-
conjugated immunoglobulin (Sigma, St. Louis, MO) and
the Super Signal chemiluminescense substrate kit (Pierce,
Rockford, IL) was used to visualize immunoreactive bands.
After visualization, the mem-branes were then stained with
Amido-Black to qualitatively verify protein loading. Band
visualization was obtained by exposure of membranes to
autoradiographic film (Kodak Biomax™). Samples were ana-
lyzed in quadruplicates and measurements were averaged
and used as one individual data point for statistical analysis.
Quantification of differences in protein bands between
samples was done using densitometric analysis (ImageJ
software v.1.47). The internal control β-actin was used to
standardize experimental values in densitometric analysis.
Densitometric values were calculated as: density of sample
band/density of background.

Statistical analysis
The SAS general linear model (SAS Institute, North
Carolina) procedures for two-way analysis of variance
(ANOVA) were used to examine effects of experimental
conditions (mTBI vs. sham) and housing condition (en-
riched environment vs. control) on neuroinflammatory
state (IL-1β, TNF-α, and IL-10) and brain energy homeosta-
sis (AMPK, p-AMPK, and uMtCK). The SAS CONTRAST
statement was used for planned comparisons when appro-
priate. Repeated measures ANOVA was used to analyze be-
havioral data. All error bars represent ± standard error of
the mean (SEM) of the sample size used in the study.

Results
EE effects on inflammatory state
We examined the expression of the pro-inflammatory cy-
tokines interleukin-1β (IL-1β) and tumor necrosis factor-α
(TNF-1α) as well as expression of the anti-inflammatory
cytokine interleukin-10 (IL-10). Our results showed sig-
nificant main effects on IL-1β (F(3,30) = 9.21, p < 0.05) and
TNF-α (F(3,30) = 9.67, p < 0.05) in the prefrontal cortex
where mTBI led to the upregulation of these inflamma-
tory cytokines even after more than a month of reco-
very from injury (Figure 1A and B). However, housing
rats in EE immediately after brain injury significantly de-
creased levels of IL-1β and TNF-α in the prefrontal cortex
to 36% and 32%, respectively, when compared to the mTBI
animals housed in regular laboratory cages. No significant
changes in IL-1β and TNF-α levels were seen in the sham
groups. Similar pattern of significant effects of IL-1β (F
(3,30) = 10.07, p < 0.05) and TNF-α (F(3,30) = 9.71, p < 0.05)
were seen in the ipsilateral hippocampus (Figure 1D and E).
In addition, we also examined levels of IL-10 and found

significant main effects of injury (F(3,30) = 10.99, p < 0.05) in
IL-10 levels where a persistent downregulation of this anti-
inflammatory cytokine was seen in the prefrontal cortex
weeks after mTBI. But housing rats in EE immediately after
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Figure 1 Inflammatory markers. ELISA results of IL-1β (A), TNF-α (B) and IL-10 (C) levels in the prefrontal cortex and hippocampus (D-F).
Increased levels of IL-1β and TNF-α are evident in both prefrontal cortex and hippocampus of mTBI rats but housing animals in EE after injury
modulated the upregulation in these pro-inflammatory cytokines. In contrast, levels of the anti-inflammatory cytokine IL-10 is decreased in mTBI
rats assigned in the control environment compared to the mTBI rats housed in EE. Sham groups show minimal expression of both anti-inflammatory
and pro-inflammatory cytokines. *p < 0.05, **p < 0.01.
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mTBI significantly modulated the reduction of IL-10 levels
(F(3,30) = 10.02, p < 0.05). IL-10 level in the mTBI rats
housed in EE was 41% higher when compared to the mTBI
animals housed in regular laboratory cages. No significant
differences were seen in IL-10 levels in the sham rats
(Figure 1C). Again, a similar pattern of significant effects of
injury (F(3,30) = 11.05, p < 0.05) and EE housing (F(3,30) =
12.03, p < 0.05) were seen in the hippocampus (Figure 1F).
Together, these results suggest that neuroinflammation can
endure weeks after injury but housing rats in EE during re-
covery can modulate this persistent consequence of mTBI.

EE effects on pAMPK/AMPK ratio
We measured total AMPK and pAMPK to obtain the
pAMPK/AMPK ratio as an indication of cellular energy
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status [31,32]. We found significant main effects of injury
(F(3,30) = 10.93, p < 0.05) and EE housing (F(3,30) = 10.48,
p < 0.05) on pAMPK/AMPK ratio in the prefrontal
cortex where mTBI resulted in significantly decrease
pAMPK/AMPK ratio in comparison to the sham groups
(Figure 2A). However, housing rats in EE after injury sig-
nificantly lessened the effects of mTBI on pAMPK/AMPK
ratio. Posthoc comparison showed that the pAMPK/
AMPK ratio of mTBI rats housed in EE was not signifi-
cantly different from the sham control group. Comparison
of the sham groups also showed significant effects of EE
housing on pAMPK/AMPK ratio where sham rats housed
in EE had 33% higher ratio compared to the sham control
animals. Examination of pAMPK/AMPK ratio in the
hippocampus also showed significant main effects of



Figure 2 Ratio of pAMPK/AMPK. Representative Western blots of total AMPK and phosphorylated AMPK (pAMPK) in the hippocampus
(upper panel). Bar graphs show that the ratio of pAMPK/AMPK is significantly decreased in the prefrontal cortex (A) and hippocampus (B) of mTBI
rats assigned to control housing. Housing rats in EE after mTBI restored ratio of pAMPK/AMPK to normal levels. Notably, an overall increase in
pAMPK/AMPK is evident in the sham animals housed in EE. *p < 0.05, **p < 0.01. Legend: 1 – mTBI control housing, 2 – mTBI EE housing,
3 – sham control housing, and 4 – sham EE housing.
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mTBI (F(3,30) = 11.33, p < 0.05) and housing condition
(F(3,30) = 12.11, p < 0.05) with the pattern of changes simi-
lar to that seen in the prefrontal cortex (Figure 2B).

EE effects on uMtCK
Measurement of uMtCK was also done in the present
study because of the involvement of this kinase in energy
transduction [33]. Significantly decreased uMtCK ex-
pression was seen in the prefrontal cortex after mTBI
(F(3,30) = 9.61, p < 0.05) compared to the sham groups;
but housing rats in EE after injury mitigated the reduction
in uMtCK levels (F(3,30) = 10.31, p < 0.05) induced by
mTBI (Figure 3A). Posthoc comparison showed that the
uMtCK levels of mTBI rats housed in EE was not

CTE
Figure 3 uMtCK Expression. Upper panel show representative Western b
(B). Bar graphs show significantly decreased uMtCK expression in both pre
housing. Housing rats in EE after mTBI restored uMtCK to normal levels. Re
housed in EE. *p < 0.05, **p < 0.01. Legend: 1 – mTBI control housing, 2 –

RETRA
significantly different from the sham CON group. Com-
parison of the sham groups also showed significant effects
of EE housing on uMtCK expression where sham rats
housed in EE had 28% higher levels compared to the sham
control animals. When uMtCK levels were examined
in the hippocampus, significant main effects of mTBI
(F(3,30) = 12.17, p < 0.05) and housing condition (F(3,30)
= 11.22, p < 0.05) were also seen with expression levels
similar to that seen in the prefrontal cortex (Figure 3B).

EE effects on mTBI-induced cognitive impairment
Rats were allowed to recover for 4 weeks in their assigned
housing condition after injury before undergoing be-
havioral testing. All rats remained in their assigned

D A
lots of uMtCK expression in the prefrontal cortex (A) and hippocampus
frontal cortex and hippocampus of mTBI rats assigned to control
markably, an overall increase in uMtCK is evident in the sham animals
mTBI EE housing, 3 – sham control housing, and 4 – sham EE housing.
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environment throughout the testing days until the end of
the study. Our results showed that overall mTBI control
rats demonstrated significantly increase swim latency (F
(3,30) = 11.22, p < 0.05) and made more errors (F(3,30) =
10.23, p < 0.05) in the non-matching-to-sample task even
after 4 weeks of recovery from injury (Figure 4). We also
found that the number of errors made in the delayed
non-matching-to-sample task increased with increasing
time delay between the sample and test trials (F(3,30) =
10.14, p < 0.05). Furthermore, performance in the delayed
non-matching-to-sample tasks showed impairment in the
mTBI control rats overall. Housing rats in EE after injury
significantly mitigated the mTBI-induced cognitive im-
pairment where their performance did not differ from
those of the sham control group in both the non-
matching-to-sample and delayed non-matching-to-sample
tasks. Also, the sham EE groups demonstrated better per-
formance overall in both the non-matching-to-sample and
delayed non-matching-to-sample tasks.

Discussion
In the present study we show that mTBI-induced neu-
roinflammation, disruptions in brain energy metabolism,
and behavioral impairment may be modifiable by enriched
environment housing after injury. These findings are sup-
ported by our data that EE: (1) modulated mTBI-induced
upregulation of the pro-inflammatory cytokines IL-1β and
TNF-α and enhanced levels of the anti-inflammatory cyto-
kine IL-10; (2) mitigated mTBI-induced cognitive impair-
ment; and (3) attenuated mTBI-induced downregulation
in pAMPK/AMPK ratio and uMtCK levels. Ultimately,
our findings extended the work of others [22-25,34-37]
suggesting that EE housing after either mild or severe
mTBI may be an effective therapeutic intervention that
can optimize behavioral recovery after injury.
Here we show that the neuroinflammation induced by

mTBI persisted for 4 weeks after the injury and that
housing rats in EE immediately after injury significantly

ACTE
Figure 4 Behavioral performance. Overall, mTBI rats assigned to control
(B) in the non-matching-to-sample. Increasing time delay between the sam
providing enrichment after injury enhanced functional recovery as seen in
control animals. EE housing in sham animals also led in enhanced behavio
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reduced the inflammatory response. The persistent neu-
roinflammation seen in the mTBI control group is simi-
lar to reports from clinical and experimental studies that
neuroinflammation resulting from mTBI can last from
months to years after injury [14,38,39]. Neuroinflamma-
tion in the acute phase of mTBI triggers the release of
pro-inflammatory cytokines essential for mounting a de-
fense mechanism associated with neutralization of the in-
sult and restoration of normal structure and function
following injury [40]. However, if neuroinflammation is not
regulated, it can result in a self-propagating and deleterious
process [14]. This is evident in our data showing that the
continuing neuroinflammation seen in mTBI rats assigned
in control housing is associated with persistent cognitive
impairment, downregulation of pAMPK/AMPK ratio, and
uMtCK levels in the prefrontal cortex and hippocampus.
The modulation of IL-1β and TNF-α expression in the
mTBI rats housed in EE may be partially mediated by the
increased release of the anti-inflammatory cytokine IL-10.
One of the contributing factors to cognitive impairment

following mTBI is neuroinflammation. For example, the
pro-inflammatory cytokine IL-1β in particular is reported
to affect hippocampal-dependent memory tasks (reviewed
in [41]). As well, increased pro-inflammatory cytokine
TNF-α is reported to reduce synaptic plasticity and con-
tribute to neurodegeneration [42-44]. Thus, it is logical to
think that the modulation of IL-1β and TNF-α expression
in the hippocampus and prefrontal cortex of mTBI rats
housed in EE seen in this study led to the sparing of dis-
ruptions in cognitive function. This line of thinking is sup-
ported by our findings that the mTBI rats housed in EE
performed as well as the sham control animals in both the
non-matching-to-sample and delayed non-matching-to
sample tasks. However, our behavioral findings are at odds
with a recent study where only partial mitigation of cogni-
tive impairment in mice housed in EE after Influenza-
induced inflammation [28] is reported. Some possible
reasons in the conflicting findings are: (1) different triggering
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housing showed longer mean swim latency (A) and made more errors
ple and test trials also resulted in more errors made (C). Remarkably,
the similar performance of the mTBI rats housed in EE and the sham
ral performance. *p < 0.05, **p < 0.01.
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events for inflammation. wherein we used mTBI and the
other study used Influenza virus. It is possible that Influenza
also induced fatigue as part of the ‘sickness behavior’
commonly seen in peripheral inflammation [45], which
affected the animals’ performance in the water maze; (2)
time of behavioral testing wherein we started the non-
matching-to-sample test 4 weeks after mTBI while in the
other study, mice were tested in the water maze 48 hours
after inoculation with the Influenza virus. The possibility
exists that our data may have been influenced by
some degree of spontaneous recovery [46,47] reported to
occur after brain injury. That is, in our study the rats were
housed in EE for 4 weeks and throughout the behavioral
testing period, thus spontaneous recovery may have been
enhanced.
In this study we also show that mTBI resulted in per-

sistent downregulation of pAMPK/AMPK ratio, which is
tempered by EE housing suggesting that providing en-
richment may initiate mechanisms that help conserve
ATP levels that are depleted following injury. AMPK is
an evolutionarily conserved signaling molecule that is
considered one of the most important energy sensors in
the body [48]. AMPK is activated via phosphorylation
when ATP is depleted, which makes it a good marker
for cellular energy [49]. The response of AMPK then to
changes in neuronal energy status and metabolic stress
makes the pAMPK/AMPK ratio a reasonable measure of
neuronal responsiveness to changes in energy status.
AMPK controls cellular energy through phosphorylation
of metabolic enzymes that leads to the restoration of en-
ergy balance by activation of catabolic pathways that
produce ATP and inhibition of anabolic pathways that
use energy [50]. This role of AMPK in restoring energy
balance is apparent in our data showing that the ratio of
pAMPK/AMPK in the mTBI rats housed in EE is similar
to the sham control groups. Furthermore, it is not sur-
prising that in the current study pAMPK/AMPK ratio
significantly increased in sham rats housed in EE in rela-
tion to the sham control group given the role of AMPK
in maintaining energy homeostasis in concert with re-
ports that EE housing can enhance synaptic plasticity, an
energy consuming process.
In addition to its role in controlling cellular energy,

AMPK also regulates a variety of transcription factors
involved in learning and memory [51]. Accordingly, it is
possible that EE housing may engage AMPK to prevent
cognitive impairment resulting from mild energy deple-
tion state such as that seen in mTBI. Indeed, this line of
reasoning is supported by our data showing that the per-
formance of mTBI rats housed of EE is similar to the
sham control group. Furthermore, it is possible that the
overall enhanced behavioral performance and upregulation
of pAMPK/AMPK ratio seen in the sham EE housed rats
in this study may be explained by increased activation of

RETRACTE
AMPK linking intracellular energy levels and synthesis of
proteins involved in learning and memory.
We also measured uMtCK levels in the present study

since this molecule is highly expressed in hippocampal
granule and pyramidal cells. UMtCK is functionally coupled
to oxidative phosphorylation since mitochondrial-derived
ATP is preferentially used by this molecule to transfer high-
energy phosphates to creatine. The resultant phosphocrea-
tine acts as the cytosolic transport and storage form of
energy and used to regenerate ATP from cytosolic ADP,
which is essential in maintaining the ATP supply during
energy-consuming brain activity. Our data show that
mTBI resulted in decreased uMtCK levels but housing
rats in EE after injury regulated this injury-induced
downregulation leading to levels similar to the sham con-
trol group. We also show that sham rats housed in EE
have the highest levels of uMtCK overall. These expected
findings suggest that EE restored the decreased levels of
uMtCK following mTBI and intensified uMtCK expres-
sion in EE, a condition that requires high energy because
of increased synaptic activity, thus providing a mechanism
of energy transduction in which ATP synthesized in the
mitochondria is transferred to sites of ATP utilization.

RTIC
LE
Conclusions
Our data show the potential of EE to modulate the per-
sistent: (1) neuroinflammatory response seen following
mTBI, and (2) persistent disturbance in brain energy
homeostasis. It is possible that through the mechanism
of modulating neuroinflammation, EE housing is able to
restore the disruption in energy metabolism induced by
mTBI. Furthermore, the modulation of energy metabol-
ism seen in the mTBI rats housed in EE seemed to cor-
relate with functional recovery. Collectively, these results
suggest that EE housing can be effective in providing
neuroprotection after mTBI consistent with previous re-
ports [22-25,34-37]. Our findings point to the importance
of using therapeutic strategies directed at modulating the
normal compensatory mechanism seen after CNS insult
so that its harmful effects can be minimized.
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