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Abstract 

To date, several studies on genomic events underlying medulloblastoma (MB) biology have expanded our understand-
ing of this tumour entity and led to its division into four groups—WNT, SHH, group 3 (G3) and group 4 (G4). However, 
there is little information about the relevance of pathogenic mitochondrial DNA (mtDNA) mutations and their con-
sequences across these. In this report, we describe the case of a female patient with MB and a mitochondriopathy, 
followed by a study of mtDNA variants in MB groups. After being diagnosed with G4 MB, the index patient was treated 
in line with the HIT 2000 protocol with no indications of relapse after five years. Long-term side effects of treatment were 
complemented by additional neurological symptoms and elevated lactate levels ten years later, resulting in suspected 
mitochondrial disease. This was confirmed by identifying a mutation in the MT-TS1 gene which appeared homoplas-
mic in patient tissue and heteroplasmic in the patient’s mother. Motivated by this case, we explored mtDNA mutations 
across 444 patients from ICGC and HIT cohorts. While there was no statistically significant enrichment of mutations 
in one MB group, both cohorts encompassed a small group of patients harbouring potentially deleterious mtDNA vari-
ants. The case presented here highlights the possible similarities between sequelae caused by MB treatment and neu-
rological symptoms of mitochondrial dysfunction, which may apply to patients across all MB groups. In the context 
of the current advances in characterising and interpreting mtDNA aberrations, recognising affected patients could 
enhance our future knowledge regarding the mutations’ impact on carcinogenesis and cancer treatment.
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Introduction
Although mitochondrial DNA (mtDNA) mutations have 
been reported in numerous malignancies, in most cases, 
the pathogenic role of these variants has yet to be clari-
fied [4]. This uncertainty is likely due to the various phe-
notypes of mitochondrial dysfunction. The consequences 
of one mtDNA variant can, for example, vary depending 
on the organ affected and the heteroplasmy level. It is 
often assumed that variants exceeding 60% to 80% het-
eroplasmy have a biochemical effect [9]. Nonetheless, for 
susceptible organs like the brain, even variants beneath 
this threshold might result in disabilities such as vision 
and hearing loss, epilepsy, ataxia, and cognitive impair-
ment [8, 9]. This diversity poses a challenge in predicting 
the impact of variants. At the same time, it seems par-
ticularly intriguing, as it might contribute to gradients 
and stages within tumours [4].

Medulloblastoma (MB) is one of the most frequent pri-
mary malignant brain tumour entities in children. Four 
established MB groups, namely WNT, SHH, group 3 
(G3) and group 4 (G4), differ in molecular driver events 
and patient outcomes [1]. However, there have been only 
a few investigations of the role of mtDNA variants in this 
tumour entity, and none of these studies considered an 
association with the four MB groups [2, 5, 10–12]. Here, 
we report the case of a female patient suffering from 
group 4 MB and mitochondriopathy and put this into the 
context of mtDNA variants in 444  MB patients across 
two distinct cohorts.

Case presentation
The index patient was first diagnosed with G4 MB at the 
age of seven. After complete resection of the tumour, 
fractionated craniospinal radiotherapy with simultane-
ous administration of vincristine followed by chemother-
apy (cisplatin, lomustine and vincristine) was conducted 
according to the HIT 2000 protocol (ClinicalTrials.gov/
NCT00303810). Follow-up screenings showed no signs of 
relapse in MRI after five years. Throughout treatment, the 
patient suffered from cerebellar mutism and neurological 
side effects such as ataxia, balance disorders and abdu-
cens paresis. Ten years after diagnosis, she presented with 
clinical signs such as sensorineural hearing loss, fatigue 
and seizures combined with increased lactate and lac-
tate-pyruvate quotient, indicating a mitochondriopathy. 
Tissues of the patient and the mother (both: leukocytes, 
hair, bladder epithelium; patient only: tumour tissue) 
were tested, and a mutation in the gene encoding the 
mitochondrial tRNA for serine (MT-TS1) was found in 
all samples. The variant’s heteroplasmy ranged from 20% 
(leukocytes) to 70% (bladder epithelium) in the patient’s 
asymptomatic mother but was found almost homoplas-
mic (heteroplasmy ≥ 89%) in patient tissue, indicating 

segregation with the disease (Additional file  1: Fig. S1). 
Within the following months, the girl developed therapy-
resistant epilepsy with bilateral generalised seizures, pro-
gressive ataxia, and dysphagia. Despite all efforts, she died 
from the sequelae of the mitochondriopathy.

Cohort study
Based on this case, we raised the question of whether 
there might be a connection between pathogenic mtDNA 
variants and MB occurrence or phenotype. We ana-
lysed mtDNA variants in MB, employing whole-genome 
sequencing data of 491 patients from the ICGC cohort 
and 57 formalin-fixed paraffin-embedded human G3/G4 
MB tumour samples of 54 patients from the HIT cohort, 
explored by mtDNA targeted sequencing. Samples of 101 
patients and one additional control sample of the ICGC 
cohort were excluded from further analysis due to low 
coverage of the mtDNA. Following the initial calling of 
34,072 (ICGC) and 4,224 (HIT) variants, respectively, all 
calls were annotated and filtered, aiming to identify path-
ogenic variants (Additional file 1).

We found 303 mutations in the ICGC and 42 muta-
tions in the HIT cohort (Fig.  1a, Additional file  1: Fig. 
S2 and S3). In both cohorts, more than 85% of final calls 
were single nucleotide variants, and most mutations 
were located in the coding area of the mtDNA. The mean 
level of heteroplasmy, determined as variant allele fre-
quency (VAF), was 31.78% in ICGC and 18.88% in the 
HIT cohort (Additional file  1: Fig. S3). To increase the 
likelihood of examined mutations causing mitochondrial 
dysfunction, we subsequently focused on variants with at 
least 50% heteroplasmy (n = 80).

A small group of patients harbouring (likely) patho-
genic or disease-associated mutations with high het-
eroplasmy appeared to be present in both cohorts 
encompassing eight patients (2.05%) in the ICGC cohort 
and two patients (3.7%) in the HIT cohort (Fig. 1b, Addi-
tional file 1: Fig. S4). However, there was no prevalence 
for samples with mtDNA mutations to be enriched in 
one MB group in the ICGC cohort (Additional file  2: 
Table  S1). Referring to the variant detected in the 
index patient, one pathogenic mutation in MT-TS1 was 
detected in both cohorts (Additional file  1: Fig. S3a), 
exhibiting low heteroplasmy in all patients affected 
(VAF < 10%).

Discussion and conclusions
Although several reports have shown associations of 
mtDNA mutations with various tumour entities [10, 12], 
only a few studies assessed their highly context-depend-
ent biological consequences in  vivo or in  vitro [4]. The 
introduction of cytoplasmic hybrid (cybrid) cells, meth-
ods to manipulate a variant’s heteroplasmy, and other 
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models might enable future research to improve variant 
classification and receive new insights into the role of 
mitochondrial dysfunction in cancer [3]. In the course 
of this progress, it has already been demonstrated that 
mtDNA variants might not only be involved in carcino-
genesis but also in cancer progression and the adapt-
ability of tumours towards changing environments [4]. 
Furthermore, their impact on therapy efficacy and safety 
is currently under discussion [7]. Therefore, mtDNA 
aberrations may become relevant to the affected cancer 
patients in multiple areas of their disease.

Taken together, the case reported here highlights that 
neurological symptoms of mitochondrial dysfunction 
can closely resemble long-term sequelae of MB treat-
ment. As demonstrated in the analysis of two cohorts, 
the consequences of confounding between these two 
pathogenicities might affect a fraction of patients in all 
MB groups. It remains to be elucidated whether mtDNA 
mutations are involved in tumorigenesis or impact 
tumour cell functions in these patients or a specific sub-
group within MB. Nevertheless, against the background 
of the current advances regarding the functional analysis 
of mtDNA mutations, identifying the according patients 
could become important regarding our understanding of 
tumour formation, progression, and treatment outcomes.
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Fig. 1  Pathogenic mtDNA variants with high levels of heteroplasmy in MB patients a Overview of the variant filtering and classification workflow 
created with Biorender.com. The numbers shown refer to the number of calls at each analysis stage regardless of the number of patients harbouring 
these calls. b Circle plots illustrating the proportion of patients with and without mtDNA variants in ICGC (top) and HIT (bottom) cohorts. A patient 
was counted as mutated if an observed variant had been classified as (likely) pathogenic or disease-associated and showed a heteroplasmy 
of at least 50%
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