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Introduction
Sporadic AD typically occurs after the age of 65 and is 
the most common cause of dementia in older people. 
We consider here the disease under its main pathophysi-
ological definition that classically consists of extracellular 
amyloid plaques and intracellular neurofibrillary tangles 
[69, 70]. These abnormalities lead to a cascade of events 
eventually conducting to cognitive disorders and demen-
tia. There are, however, a significant number of diverse 
clinical presentations with ages of onset and evolution in 
the disease that suggest non-univocal pathophysiological 
mechanisms [61]. It seems that some cases of sporadic 
AD involve changes in the constitution and architecture 
of myelin, and this early in the life of the future patient. 
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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the 
accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated 
unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears 
to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals’ 
accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis 
response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides 
are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several 
years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic 
consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the 
toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role 
of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose 
that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders 
in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic 
proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of 
questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
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In general, extracellular abnormalities of the amyloid 
cascade predominate, followed most often by other Tau 
mediated biological mechanisms at the intracellular level, 
accompanied by inflammatory, neuroimmune and neu-
rochemical disorders that can put dysmyelination at the 
forefront of neurodegenerative disorders.

Myelin consists of a multilayered membrane wrapped 
around the axons of most central nervous system (CNS) 
neurons. This membrane is produced by expansions 
of specialized glial cells of the brain, “the mature oligo-
dendrocytes”, derived from oligodendrocytes progenitor 
cells (OPCs) [21]. This cell line constitutes the precursor 
cells for the constitution of the myelin sheath through a 
well-defined program of proliferation, migration, and dif-
ferentiation to lead to the myelination of neuronal axons 
[100]. Among the properties of myelin, the best known is 
the saltatory conduction of nerve impulses, which gives 
it more speed and efficiency. Furthermore, it is now well 
acknowledged that oligodendrocytes’ expansions display 
a trophic, plastic, and metabolic influence on the axons 
they envelop (Fig.  1) [130, 139]. Myelin is constantly 
reshaping and its alteration in degenerative phenomena 
such as Alzheimer’s disease (AD) may be a fundamental 

element for the genesis of pathophysiological and clinical 
disorders observed in the early stages of the disease [22].

AD involves progressive neurodegeneration with neu-
ronal losses leading to cognitive, memory, emotional, 
behavioral disorders, and a progressive dependence 
[210]. Long considered to primarily affect the grey mat-
ter, many studies have described early lesions of the white 
matter in patients with nascent and moderate intensity 
[55]. The main molecular alterations of the disease are 
considered to contain essentially a pathology of the pro-
duction/degradation and an intra-brain accumulation of 
amyloid β (Aβ) peptides producing deposits in the form 
of hydrophobic plates of aggregated toxic peptides (senile 
plaques) [69, 159]. Another proteinopathy usually accom-
panies the previous protein in the form of hyperphos-
phorylated tau proteins and deposits of neurofibrillary 
tangles. These toxic proteins maintain chronic inflam-
mation and oxidative stress accompanied by neuronal 
and synaptic losses at the origin of the symptomatology 
[31]. This paper reviews the fundamental importance 
of myelin and correct CNS myelination for its develop-
ment, functional adaptations, and permanent reshuf-
fling. During aging in the human patient, sporadic AD 

Fig. 1  Oligodendrocytes are derived from the differentiation of oligodendrocyte precursor cells (OPCs) and are the main cell for remyelin-
ation. (modified from [175]). The differentiated oligodendrocytes of OPCs migrate to different axons via positive chemotactism [216]. A variety of growth 
and trophic factors regulate the development of oligodendrocytes and their temporal and geographical attractions [17]. Many of these factors are pro-
duced by both neurons and astrocytes, regulating the proliferation, survival, or degeneration of OPCs. The neuroregulin, which activates Erb-tyrosines 
kinases receptors, promotes the survival and proliferation of oligodendrocytes. The activation of the Notch 1 cascade inhibits the differentiation of oligo-
dendrocytes, and an integrin/contactin complex coordinates signals from the extracellular matrix and the axonal surface to regulate oligodendrocyte sur-
vival and myelination. This also depends closely on the electrical activity propagated in the axons. OPCs express functional adenosine receptors, activated 
by action potential [149, 183]. Adenosine acts as a powerful transmitter between glia and neurons to inhibit the proliferation of OPCs, stimulate their dif-
ferentiation and stimulate myelin production. The LIF (leukemia inhibitory factor) is heavily involved in oligodendrocyte development kinetics and in the 
overall myelination process [133, 198]. Abbreviations: CNTF, ciliary neurotrophic factor; FGF, fibroblast growth factor; IGF, insulin-like growth factor; LIF, leuke-
mia inhibitory factor; NCAM, neural cell adhesion molecule; NT-3, neurotrophin 3; OPCs, oligodendrocyte precursor cells; PDGF-A, platelet-derived growth factor-A
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has plurifocal impairments that induces various clinical 
presentations depending on the intensity of inflamma-
tory and immune reactions, and ischemic, mitochondrial, 
and free radical disorders. In many cases, the hypothesis 
of an alteration of the amyloid cascade Aβ as a primitive 
mechanistic etiology is questionable and multiple pro-
teinopathies can be implicated, which depend on somatic 
mosaicism, transcriptional and translational alterations. 
In many cases, myelin and its integrity appear to be a 
preferential and early target in multiple forms of AD, and 
oligodendrocytes represent a cell population highly sen-
sitive to Aβ and other proteinopathies. These misfolded 
proteins result in multiple dysmetabolism that accentuate 
and modify the course and clinical forms of the disease.

Multiple causes, multiple targets
AD as an heterogeneous disease
The amyloid hypothesis as the essential cause of neuronal 
loss and brain atrophy is a matter of discussion mainly 
because removal or reduction of amyloid plaques by 
immunological treatments display no significant effect 
on clinical symptoms of AD [39, 140]. However, before 
aggregation, the soluble oligomeric forms of Aβ peptides 
possess strong toxic properties against myelin integrity 
and neuronal survival [160, 188]. White matter lesions 
are commonly found in magnetic resonance imaging 
(MRI) scans of elderly people and are associated with 
cognitive decline [128]. Whether or not a primary role of 
Aβ peptides is fundamental in these lesions is a matter of 
debate.

Increase in the concentration of Aβ peptides in brain 
has also been described because of head trauma or 
cerebral ischemia [178, 220]. This increase in the con-
centration of Aβ peptides is additional evidence for the 
existence of various forms of Alzheimer’s like diseases 
with various clinical pictures and various mechanisms 
of neurodegenerative processes in term of pathophysi-
ological evolution and biological markers [43, 214]. 
In addition to Aβ peptides accumulation and toxicity, 
hyperphosphorylation of tau proteins, which disturbs 
microtubules assembly and axonal transport, could have 
some impact on the trophic effect on the myelin envelop 
[209]. These basic alterations are also supplemented with 
several others biological modifications of many molecu-
lar pathways and functions namely in the domain of 
energy metabolism and cholesterol transports [19]. Cho-
lesterol is fundamental for oligodendrocytes survival 
and for synthetis of myelin, this compounds represent a 
large proportion of the human brain and abnormalities in 
cholesterol metabolism are present and associated with 
brain age and in Alzheimer’s disease [12, 105]. Regarding 
cholesterol delivery to axons and synapses, the ε4 allele 
of the apolipoprotein E (APOE) gene is the less effective 
factor for cholesterol transport compared to ε3 and ε2. 

Interestingly, normal adults at the cognitive level show 
microstructural changes in myelin architecture when 
carrying homozygous alleles ε4 that is a major marker for 
late AD [128, 145, 146].

Sporadic AD is a multifactorial disease
While familial AD has essentially genetic causes 
expressed in amyloid precursor protein (APP) and pre-
senilin leading early in life to specific proteinopathies 
and inducing neurodegenerative pathologies [63], these 
mechanisms are less consistent in the sporadic AD of 
elderly subjects. In these patients displaying accumula-
tions of cerebral amyloid peptides, the question arises 
as to whether this accumulation is the cause or the con-
sequence of other factors inducing neurodegeneration. 
Over the years, many mutations are present in brain 
neurons, generating multiple proteinopathies after tran-
scriptional, translational, or post-translational errors. 
Some of these are of exogenous origin and enter the CNS 
due to the pathological porosity of the blood-brain bar-
rier (BBB). The accumulation of these abnormal proteins 
generates inflammatory and immune responses that lasts 
for many years. Such accumulation is increased by mito-
chondriopathies, and the genesis of free radicals related 
to the disruption of oxidative phosphorylation and the 
depreciation of energy metabolism. The most deleterious 
and widespread proteinopathy is that affecting the regu-
lated proteolysis of the APP, giving rise to toxic peptides 
interfering with many neuronal functions and leading 
to synaptic and neuronal losses, as well as inducing pro-
found cognitive and behavioral functional abnormalities. 
These peptides exhibit amyloid properties and accumu-
late over time into hydrophobic plaques, which can be 
detected by PET scan ligands or post-mortem histology.

Accumulating evidence supports a multi-factor for the 
origin of many forms of sporadic AD. Multi-organ altera-
tions could initiate or worsen neurodegeneration [8, 193, 
208]. Developing heart failure promoting hypoxia, intes-
tinal and hepatic disorders altering brain metabolism 
through the microbiome, ischemic symptoms due to vas-
cular deposits and chronic inflammation, could also con-
tribute to the decrease in neuronal survival [114, 197].

Metabolic disorders and AD
Many metabolic alterations have often been encountered 
in AD with varying severities. Most of these alterations 
concern or affect brain energy metabolism, these phe-
nomena being aggravated by cerebral hypoperfusion and 
blood sugar abnormalities [10]. Carbohydrate metabo-
lism and dysfunctions in intestinal absorption phenom-
ena, nutritional abnormalities and deficiencies, resistance 
to glucose utilization via decreased insulin sensitivities 
combined with fatty acid metabolism disorders, induce 
energy deficiencies deleterious to neuronal functioning 
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and survival [85]. The slowing down of the tricarboxylic 
cycle generates the accumulation of acetyl-CoA coming 
from the increased fatty acids degradation and the syn-
thesis of ketone bodies that could have a positive role 
on neuronal survival. White matter degeneration in AD 
could be in part due to the accelerated degradation of 
lipids in this context of decreased energetic metabolism 
coming from reduced glucose utilization (Fig.  2) [141, 
206].

At the hepatic level, functional alterations (cirrhosis, 
hepatitis) could aggravate the elimination of deleterious 
proteins including Aβ [201]. Modifications of bile acids 
synthesized by the altered liver tissue exhibit impaired 
neuroprotective functions. Frequently, the accumulation 
of mutations in the mitochondrial genome accelerates 
pathological phenomena at the level of the tricarboxylic 
cycle or the respiratory chain and increase ROS produc-
tion [73]. Metabolic disorders of the periphery of the 
body often affect brain metabolism via abnormal perme-
ability of BBB and the presence of abnormal metabolites 
in the cerebrospinal fluid (CSF). This mainly concerns 
certain intermediates of amino acids metabolism, par-
ticularly regarding the catabolites of tryptophan degrada-
tion [167]. This essential amino acid is the precursor not 

only of melatonin and serotonin, but also of the interme-
diates of the kynurenine cycle, some of which possess 
neuroprotective or neurotoxic properties or interfere 
with the elimination of amyloid peptides from the brain 
[116].

Myelin has morphological alterations in the early 
stages of AD
Change of the lipid composition of myelin over time [127]
Oligodendrocytes-derived myelin accounts for about 
40% of CNS lipids, consisting of 50% phospholipids, 40% 
glycolipids, 10% cholesterol and cholesterol esters, and 
polyunsaturated long-chain fatty acids (Fig. 3) [82] .

Synthesized by oligodendrocytes, cholesterol comes 
almost exclusively from ketone bodies as precursors. This 
lipid has structural functions at the level of the myelin 
by regulating the fluidity and permeability of this mem-
brane around the axons, and it regulates the speed of 
myelination according to its uptake by the membrane 
in formation. The typical lipids of myelin are essen-
tially galactosyl ceramides and sulfatides. They stabilize 
and organize myelin in direct association with the basic 
protein.

Changes in the configuration of myelin are observed 
with age but are more accentuated in AD. Not all regions 
of the brain are affected in the same way. In general, the 
volume of white matter decreases over time and the phe-
nomena of demyelination/remyelination accentuated by 
pathology leads to the decrease in the size of axons and 
the reduction in the size of the internodal distances. 
These structural changes induce functional consequences 
for conduction rates and vulnerability to traumatic, isch-
emic, dysmetabolic conditions and toxic factors such as 
oligomers Aβ peptides. These processes are commonly 
encountered as factors favoring Alzheimer’s genesis and 
pathology.

A step for the conversion of mild cognitive impairment 
(MCI) into dementia?
Studies of myelin sheath’s conformation in AD were 
mostly conducted by electron microscopy and MRI both 
in animals and humans. The 5XFAD mouse is a trans-
genic model that expresses three different mutations 
in the APP and two in presinilin 1 (PS1). In this mouse, 
amyloid deposits can be detected with synaptic losses 
at an age as early as 1.5 months [142] and myelin abnor-
malities can be seen even earlier accompanying the first 
alterations in spatial memory occurring around the age 
of 1 month [67]. Several studies conducted in humans 
suggest that myelin disorders strongly contribute to the 
onset of AD symptoms. Neuroimaging shows myelina-
tion defects in several brain regions, but especially and 
firstly in the hippocampus and corpus callosum [55, 137, 
147, 202]. Conformation abnormalities accompanied by 

Fig. 2  Dysregulation in multiple biochemical pathways underlie 
the pathogenesis of AD. Metabolomic approaches conducted from 
the blood or CSF of AD patients compared to controls highlighted ab-
normalities in the energy metabolism of patients. A diabetic-type pathol-
ogy is often evoked with a decrease in insulin sensitivity. In addition to 
disorders in glycolysis and the respiratory chain, abnormalities involving 
accumulations of ketone bodies resulting from the metabolism of acetyl-
CoA residues, a product of the accelerated degradation of fatty acids by 
β-oxidation, have been described. The bioavailability and metabolism of 
several amino acids could also be affected, especially concerning tryp-
tophan degraded in the kynurenine cycle and resulting in the formation 
of neuroprotective (kynurenic acid) or neurotoxic (quinolinic acid) com-
pounds. Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; 
NADH, nicotinamide-adenine-dinucleotide; ROS, reactive oxygen species; TCA, 
tricarboxylic acid; βOHD, beta-hydroxybutyrate
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thinning of the myelin sheath are frequently encountered 
even before the onset of axonal lesions, which may indi-
cate premises for demyelination. In the pre-clinical stages 
of the disease, MRI shows altered longitudinal and trans-
verse relaxation times and increased myelin hydration 
degrees [18]. In general, abnormalities in the structure 
and formation of the cerebral white matter have been 
identified in many presentations of Alzheimer’s disease 
that can be warning signs for a disease in progress [156]. 
Variations in T1w/T2w ratios in patients with risk factors 
(close family history, APOE4 phenotypes) were identified 
compared to control individuals. In addition, individu-
als at risk had an association with altered patterns of 
resting-state functional connectivity (rs-FC) [52]. These 
abnormalities support the idea of significant alterations 
in myelin developing with age and constituting signals of 
vulnerability [53]. Interestingly, some studies have shown 
a relationship between structural abnormalities of myelin 
in ADs in the pre-clinical period and peptide concentra-
tions of Aβ1–42 in patients’ CSF [34, 38].

Studies of cortical stratification in the human brain 
provide important knowledge on the level of degenera-
tion, in addition to the information given by the level of 
volumetric atrophy [147, 155]. MRI studies show hyper-
densities in the white matter with volume increase con-
sistent with the abnormalities of amyloid peptides and 
tau proteins in CSF. At the histological level, it appears 
that these stratification disorders are mainly due to alter-
ations in myelin architecture in which iron ions could 
play an important role [194]. Vascularization and oxygen 
supply in injured hyper-dense regions are decreased and 

are related to axonal lesions and inflammatory disorders, 
BBB permeability abnormalities and multiple dissemi-
nated micro-hemorrhagic structures [88, 102].

Potential involvements of epigenetic mechanisms 
in myelin reshuffle
GWAS (genome-wide association study) has identified 
about 40 loci associated with AD in the European popu-
lation and in these respective loci, several genes involved 
directly in the causative mechanism of the disease have 
been described (APOE, CR1, BIN1, TREM2, CLU SORL1, 
ADAM10, ABCA7, CD33, SP11, PIRLA). It remains to 
identify the functions of many genes in the identified 
loci. Many risk genes are involved in the innate immune 
response and neuroinflammation. The CD33 and TREM2 
microglia receptors, implicated in microglial pathology, 
represent new targets for the development of therapeu-
tic tools. It is possible in many cases that the activation 
of innate immunity, like that encountered in other myelin 
pathologies, associated with long-term inflammatory 
mechanisms, is responsible for subtle alterations of 
myelin during the incubation period of the disease [5, 
65].

Over 20 AD risk loci falling mainly in noncoding 
regions of the genome have been identified by genome-
wide association studies, explaining the complexity of the 
disease at the genetic level [81, 98, 126]. The regulation 
of gene expression by microRNA is a promising issue 
for the diagnostic and treatment of several kind of MCI 
and AD at the beginning of the symptoms, as well as to 
discriminate with other myelin pathologies like multiple 

Fig. 3  Myelin composition and organization. The myelin wrapping around most of the CNS axons includes a large majority of complex lipids and 
15–30% of specific proteins. Lipids are essentially made up of cholesterol, galactocerebrosides and phospholipids. This envelope is constantly reshuffled 
in time and space from the oligodendrocytes that make up the bulk of the glial cells of the CNS. Chronic inflammatory and autoimmune reactions, muta-
tions in certain constituent proteins, attacks by free radicals or ischemic, and metabolic problems related to aging alter the myelin sheath that releases 
its constituents into the CSF and the bloodstream. In AD, myelin is one of the first bulwarks for the anatomical and functional integrity of the axons it sur-
rounds and undergoes early toxic action of misfolded extracellular toxic proteins or peptides. Abbreviations: AD, Alzheimer’ disease; CNP, C-type natriuretic 
peptide; CNS, central nervous system; CSF, cerebrospinal fluid; MAG, myelin-associated glycoprotein; MBP, myelin basic protein; MOG, myelin oligodendrocyte 
glycoprotein; PLP, proteolipid protein
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sclerosis [103, 226]. In such diseases, the dynamics of 
the myelination/demyelination/remyelination balance is 
continuously evolving under normal conditions of plas-
ticity of the nervous system, but also under pathological 
conditions, where this balance is affected [47]. In this 
respect, the process of myelin degeneration are particu-
larly concerned both in multiple sclerosis and in the early 
phases of AD. Oligodendrocytes and their progenitors 
are directly involved in membrane and metabolic interac-
tions with neurons during the different phases of destruc-
tion and regeneration of the myelin sheath, driven by the 
dynamic and fluctuating expression of many transcrip-
tion factors [179]. The activity of the nervous system is 
intimately linked to the epigenetic regulation of the activ-
ity of these factors and to the neo-expression of certain 
genes involved in the functional dynamics of the produc-
tion/destruction of myelin [158]. Correct myelination is 
essential for the proper development and evolution of 
neuronal connections and the adaptation of brain func-
tion to the environment. It constantly reshapes neuron/
oligodendrocytes interactions following many factors 
such as learning, social relationships, emotional stimuli 
(emotions, anxiety) [166, 217]. These stimuli can induce 
epigenetic modifications that alter the physiology and 
functionality of precursors and oligodendrocytes [165].

Changes in the epigenome have a role in the manifes-
tations of AD [13]. Social isolation impacts the inten-
sity of neuronal activity and reduces the importance of 
myelination [6, 139]. Modifications in the acetylation and 
methylation of histones were detected, as well as in DNA 
[131]. These adaptations participate in the regulation of 
genes involved in the processes of myelination/demyelin-
ation and in the pathophysiology of certain neurodegen-
erative diseases where these processes play a central role 
(AD, but also multiple sclerosis) [30]. This last pathology 
of myelin includes analogies with those existing in some 
phenotypic form of AD and may be the consequence of 
a combined alteration of genetic and epigenetic factors, 
the latter involving DNA methylations, histone modifica-
tions, chromatin remodeling and modified regulation of 
non-coding RNA [16].

Brain markers of myelin in Alzheimer’s patients
Looking for myelin components in biological fluids
At the genetic markers level, several genes associated 
with the corpus of the oligodendrocyte ecosystem have 
been described as risk factors in late-onset AD [124]. In 
genomic association studies, the BIN1 (bridging inte-
grator 1) gene is considered to be significantly involved 
in late AD behind the APOE gene [169]. It is mainly 
expressed in mature oligodendrocytes and white mat-
ter in rodents and humans, where it regulates mem-
brane dynamics in the phenomena of endocytosis and 

membrane remodeling [37]. Histologically, BIN1 is 
mostly expressed at the Ranvier nodes.

BACE1 (beta-site amyloid precursor protein cleav-
ing enzyme 1) codes for a transmembrane β secretase 
expressed in several cell types including oligodendro-
cytes. It cleaves APP giving birth to amyloid peptides, but 
also neuroregulin 1, which modulates the myelination 
and differentiation of oligodendrocytes [50, 195]. Many 
β-secretase inhibitors have effects on myelin abnormali-
ties caused by AD. Finally, several other genes that are 
also expressed in oligodendrocytes (PICALM, NME8, 
PSEN, for example) possess a special responsibility as 
genetic factors associated with the development of AD 
[123].

LINGO 1 (leucine rich repeat and Immunoglobulin-like 
domain-containing protein 1) codes for a transmembrane 
protein primarily expressed in the cortex, hippocampus, 
thalamus, and amygdala. The protein acts primarily as a 
negative regulator of myelination and its inhibition may 
have potential applications for the treatment of myelin 
damage in neurodegenerative diseases [204]. As such, 
anti-LINGO 1 antibodies promote the action of oligo-
dendrocytes and the repair of myelin disease [212].

The biochemical markers of the white matter indicating 
the evolution of late AD are of many natures and depend 
on the stage of the disease. Since myelin is mainly com-
posed of complex lipids synthesized by oligodendrocytes, 
reduced levels of galactosyl ceramide (cerebroside) and 
sulfatide can be found in both the grey and white matters 
of AD brains [89]. These compounds are the most specific 
lipids of myelin, decreasing in parallel with the severity of 
the disease and altering long before fibrillary deposits of 
tau protein [28, 87]. Cholesterol concentrations, another 
majority lipid compound of myelin sheaths, is known to 
decrease with the onset of cerebral atrophy [44].

Myelin proteins are also involved in relatively early 
stages of the disease (Braak stage I and II), in which alter-
ations of oligodendrocytes and myelin are noted even 
before the onset of clinically detectable cognitive disor-
ders [55]. The level of most myelin proteins is likewise 
decreased in more advanced stages of AD (Braak stages 
V and VI). Lowered concentrations of basic myelin pro-
tein (MBP), proteolipid (PLP) and 2’-3’ cyclic nucleotide 
phosphodiesterase (CNPase) are observed, specifically in 
several regions of the cerebral cortex.

In the field of protein markers present in patients’ 
CSF, there is a wide heterogeneity and variability, which 
confirm the impression that sporadic AD may be the 
consequence of multiple and varied alterations in many 
metabolic circuits. This reinforces the idea that the 
pathophysiological mechanisms leading to late AD are 
multifactorial and reveal a disease of great complexity 
[205]. Many cognitive pathologies with MCI are often 
accompanied in a non-specific way by the presence of 
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inflammatory markers and proteins associated with the 
complement cascade in the CSF or blood of patients.

Oligodendrocyte’s dysfunction: A major risk factor in AD 
and a process in the onset of the disease?
Before the appearance of amyloid and tau pathology, 
many forms of AD showed a breakdown of myelin due to 
the vulnerability of oligodendrocytes under this neuro-
degenerative pathology. In many cases, the loss of myelin 
sheaths appears to be the initiating step in the earliest 
stages of the disease. Extensive evidence has indicated 
that the breakdown of myelin is associated with AD since 
the vulnerability of oligodendrocytes under Alzheimer’s 
pathology easily induces the myelin breakdown and the 
loss of the myelin sheath.

Aging itself is already an important factor of myelin 
alterations and multiple cellular partners are involved 
in this process. Brain MRI often reveals signs including 
several hyper signal outbreaks in T2-weighted images 
(T2WI) with chronic cerebral hypoperfusion often 
associated with carotid stenosis [112]. These alterations 
appear more massive at the stage of MCI both in animal 
models and in human pathology than in established AD. 
In myelin abnormalities, association of oligodendrocytes’ 
losses with axonal alterations are commonly encoun-
tered in post-mortem patients [137]. The accumulation of 
Aβ peptides is considered a princeps factor in the neu-
rodegenerative process even before the appearance of 
aggregates in the form of amyloid plaques [23, 75]. The 
response of oligodendrocytes to the presence of amyloid 
peptides or plaques has been the subject of several stud-
ies. During aging, the spontaneous involution of these 
cells is important, and their disappearance is close to 25% 
from the age of 50 years, this phenomenon being potenti-
ated by the presence of the APOE ε4 allele in the genomic 
baggage of the individual [107, 132, 134]. Furthermore, 
the importance of increase in the expression of myelinat-
ing genes in oligodendrocytes from Alzheimer’s patients 
is related to the severity of the disease [64, 79]. In trans-
genic animals over-expressing the APP, the myelin sheath 
has an increased thickness and a modified architecture 
[54, 67, 211].

Originating mostly from the ventricular and subven-
tricular regions of the brain, OPCs are present in the 
brain, even in the adult stage [36, 164, 187, 218]. OPCs 
control the angiogenesis of the white matter, its vascu-
larization/oxygenation, and the myelination of axons 
according to spatial-temporal parameters, which con-
tribute to their stability, functions, and integrity [96, 
153]. Intimate exchanges between neurons regulate 
ionic homeostasis, making of real synaptic connections 
and activity of OPCs via numerous neurotransmitters 
[58, 68, 172]. These cells are also the target for several 
mitogens produced by neurons and trophic factors like 

neuroregulin 1 and brain-derived neurotrophic factors 
(BDNF), whose release depends on neuronal activity 
[77, 199]. Many studies have been conducted to explore 
early oligodendrocyte alterations in AD in association 
with changes in myelination and early symptoms of the 
disease. Most commonly, oligodendrocyte differentiation 
abnormalities are associated with disruption of oxidative 
stress phenomena associated with excitotoxicity, medi-
ated by glutamatergic metabotropic receptors in large 
amounts in oligodendrocyte precursors [22, 137]. Other 
factors, such as high iron ion levels and disorders in the 
glutathione cycle, would accentuate the presence of free 
radicals, without forgetting the mitochondrial chain 
disorders induced by the toxicity of Aβ peptides [190]. 
Mitochondria pathologies are at the forefront of axonal 
survival for functional and metabolic exchanges with the 
myelin envelope [66, 219].

Myelination is directly related to the intensity of neural 
activity, which affects the electrical properties of axons. 
The toxicity of Aβ peptides proteinopathy affects imme-
diately the whole myelin-axon, which forms a couple with 
multiple functional and metabolic relationships [181].

The toxicity of proteinopathies, which causes degen-
erations in AD, mainly concerns oligomeric Aβ peptides 
and hyperphosphorylated tau proteins [2, 41, 82]. Senile 
plaques are rarely seen in the hydrophobic white mat-
ter and does not lend itself to the aggregation of toxic 
oligomers. As a result, it is mainly these latter that exert 
toxicity on myelin. The therapeutic strategies currently 
developed for plaque removal seem not to display huge 
impact on clinical symptomatology [196]. In fact, the 
degree to which the therapeutic strategies for plaque 
removal have clinical effects remains an open question, 
as the reason why such therapies are not working well. 
For more than twenty years, therapeutic research against 
AD has focused on reducing the accumulation of patho-
logical amyloid peptides and the substances studied have 
made it possible to achieve this goal without significant 
improvement in cognitive impairment in patients. The 
amyloid hypothesis revised in many cases is questioned, 
sometimes in favor of primitive alterations of the myelin 
envelope [61]. Oligodendrocytes are very active cells 
from a metabolic point of view, especially during the 
process of myelination or remyelination. A cellular respi-
ratory abnormality that may be related to hypo-vascular-
ization or ischemia may be the source of a myelination 
disorder [137]. Vascular pathologies affecting the white 
matter are common in the elderly or with symptomato-
logically occurring early AD [78, 109]. The human brain 
is largely myelinated, which may partly explain its vulner-
ability to neurodegeneration [192].

Oligodendrocytes are widely represented in many 
areas of the human CNS, especially in the neocortex, 
where they account for about 75% of glial cells [45]. They 
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are considered very fragile, and their density decreases 
sharply in the brain of the elderly person from 50 years 
of age [223]. Various methods of labeling these cells 
have shown a severe loss of oligodendrocytes in several 
regions of the hippocampus, not correlated with the den-
sity of amyloid β deposits [40]. These specific depopula-
tions probably precede the disorganization of the neural 
connectome that precedes the appearance of AD, and a 
contemporary demyelination around the outbreaks of 
amyloid peptide deposits [94]. These dysfunctions are 
strongly associated with abnormalities in lipoprotein 
metabolism given that the amyloid oligodendrocytes 
actively participate in the synthesis of cholesterol consti-
tuting synaptic contacts [120]. They secrete apolipopro-
teins E and J, which are severe risk factors depending on 
the alleles involved in the onset of AD [85]. Interestingly, 
the production of new oligodendrocytes seems funda-
mental for motor learning in mice [111].

During the development of AD, including in the early 
stages characterized by mild, worsening memory disor-
ders (MCI), numerous studies have been performed to 
characterize the changes observable by MRI techniques 
in the structure and architecture of myelin. Schemati-
cally, the results obtained showed very early the exis-
tence of a reduction in cerebral myelin levels, with losses 
of oligodendrocytes and axons, microglial activations 
accompanied by dilated perivascular regions in the white 
matter. These studies are essentially based on the con-
trasts between the aqueous contents of the intra- and 
extra-cellular spaces at the periventricular level, com-
paring MCI patients and control persons. It seems that 
progressive ischemia with vascular and energy losses 
associated with the toxicity of certain proteinopathies 
(especially amyloidosis Aβ) alters the myelin structure 
very early and hinders proliferation and oligodendrocytic 
re-myelination [88, 137, 148].

Adaptative immunity to myelin components in AD
An auto-immune process for degeneration?
Many results support the existence of mutual interac-
tions between immune processes (innate and acquired) 
and neurodegenerative events, especially those occurring 
during the incubation of AD [33, 51, 144].

Neuroinflammation phenomena are considered to pre-
exist for a very long time in the brain before the onset of 
cellular stigmas of neurodegeneration and clinical symp-
tomatology. Chronic inflammation, microglia activation 
and lymphocytic infiltration are thought to be the result 
of intracerebral accumulation of misfolded proteins and/
or multiple exogenous attacks of various infectious agents 
during the individual’s lifetime [42]. Amyloid peptides 
and hyperphosphorylated tau are particularly involved in 
the inflammatory reaction and progressive onset of auto-
immunity [207]. Changes in circulating cytokines as well 

as disorders in the cascades of the complement and clot-
ting factors testify to changes in the immune response 
at the periphery [143]. Cleavage fragments of abnormal 
proteins, numerous glycated proteins and a large popula-
tion of phosphoproteins contribute to microglial activa-
tion in the brain and alteration of many resident proteins 
[24]. This include myelin constituent proteins that are 
presented as new antigens to the immune system. Studies 
have shown significant accumulation of autoantibodies in 
the serum of patients with AD, especially directed against 
myelin proteins [62, 115]. IgG and IgM immunoglobulins 
directed against the MOG, MBP, MAG and PLP proteins 
are frequently present in the CSF and circulating blood 
[152]. This strongly suggests the involvement of the 
immune system in myelin alterations observed in many 
AD patients and in some animal models of the disease.

Since the discovery of mutations in APP, PSEN1 and 
PSEN2 genes, which induce familial ADs, the hypothesis 
of the amyloid cascade at the origin of the pathophysiol-
ogy of AD remains the preferred mechanism of this type 
of neurodegeneration [136]. The problem is that spo-
radic AD does not usually present this type of mutation, 
although similar pathologies of Aβ peptides and tau pro-
teins are encountered in familial and late forms of the dis-
ease [106]. The main hypothesis remains those long-term 
abnormalities in Aβ peptide metabolism are the starting 
point of tau dysfunction and a series of toxic phenom-
ena inducing neuronal and cognitive losses. It appears 
that during aging, multiple mutations accumulate in the 
nuclear and mitochondrial DNA of neural cells that add 
up to the increased loss of editing and quality control of 
translated proteins [76, 108]. It is estimated that in the 
normal individual, about 20% of the proteins synthesized 
by ribosomes have structural and folding abnormalities 
and must be eliminated by the proteasome, lysosome, or 
resident proteases of the cell membrane [97, 157, 180]. 
Overloading these mechanisms leads to chronic neuro-
inflammation, microglial and macrophagic activation, 
and immune responses against abnormal non-functional 
proteins over the long-term [122]. Among the oligomeric 
peptides that accumulate in the brain and display signifi-
cant cellular toxicity are Aβ peptides and particularly the 
peptide Aβ1–42. This accumulation most often comes 
from a drop in the clearance to the vascular compart-
ment and the CSF.

The rupture of the myelin envelope appears to be an 
early phenomenon in the pathophysiology of AD [38, 
150, 202]. In humans, the vulnerability of myelin materi-
alizes on MRI through morphological changes, thinning 
and hydration swelling [49, 229]. At the same time, there 
are elevations of tau, phosphotau, soluble APPβ (sAPPβ) 
peptides and Aβ1–42 peptides. The latter peptide has a 
high toxicity to myelin in oligodendrocyte cultures and in 
animal models of familial AD (e.g. 5XFAD mice), where 
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morphological alterations of myelin are the first patho-
logical stigmas to appear in animals at 1 month of age 
[67]. The mechanisms of toxicity of peptides Aβ are still 
the subject of speculation; it seems that the oligomeric 
Aβ peptides are the main culprits of this toxicity [75]. 
Several cellular receptors (glutamates, ephrin’s, adrener-
gic, cholinergic, and immunoglobulins) bind oligomeric 
Aβ peptides and could mediate the toxicity of amyloid 
oligomers during the years of incubation of the disease 
[171, 215].

Multi-proteinopathies are associated with aging brains
During lifetime, mutations accumulate in the post-
mitotic cells of neurons due to non-replication of DNA, 
but also within mitochondrial DNA [86, 95]. This results 
in harmful mitochondriopathies for neuronal survival, as 
well as increased production of misfolded and non-func-
tional proteins. Deficiencies in quality control and pro-
tein structure editing also contribute to the intra-brain 
accumulation of protease-resistant hydrophobic deposits 
with intrinsic toxicity [1, 151]. These chronic accumula-
tions lead to long-term inflammatory and phagocytic 
reactions, as well as immune responses accompanied 
by infiltration of immunocompetent cells. Gradually, an 
amyloid reaction develops, in which peptides Aβ par-
ticipates largely because of their cerebral accumula-
tion. The elimination of these peptides from the brain is 
largely conditioned by the effectiveness of the enzymes 
that degrade them and allow their clearance [222]. The 
peptide Aβ1–42 is particularly toxic to myelin sheaths, 
axonal and synaptic endings that finally degenerate [75, 
137]. In several transgenic models of familial forms 
of Alzheimer’s, the first stigmas of the disease result in 
morphological abnormalities of myelin sheaths, in the 
form of edema and thinning of the envelope surround-
ing myelinated axons. At the same time, disturbances in 
animal behavior appear manifesting as reduced anxiety 
manifestations and reduction of memory and spatial rec-
ognition [56, 57].

Depending on the individual, brain aging does not 
occur unequivocally but depends on multiple factors 
related to specific genes and environmental situations 
(Fig.  4) [176]. The accumulation of mutations in the 
nuclear DNA of post-mitotic cells and mitochondrial 
DNA induce deleterious mitochondriopathies [121, 186], 
promote the production of abnormal proteins, impair 
respiratory and energy functions, and amplify cellular 
and oxidative stress [91]. Toxicity of abnormal oligomers 
seems to be the result of their misfolded nature, which 
exposes hydrophobic residues leading to aggregation and 
abnormal interactions with a large range of cellular com-
ponents [4]. Membranes like myelin constituted mainly 
by complex hydrophobic lipids could be an important 
target for amyloid oligomers for direct interactions 

andymes modifications inducing inflammatory and 
immune responses.

Several evidence from studies of the population of 
abnormal proteins in the CSF showed that abnormal pro-
teins in CSF represent a picture close to that of abnor-
mal proteins in the brain [11]. This methodology can 
provide information on the biochemical and metabolic 
changes that occur in the CNS of patients with neuro-
degeneration. CSF amyloid peptides and tau proteins are 
used for the diagnosis and evolution of AD [154]. Aβ1–
42 peptides correlation has been described with several 
CSF proteins belonging to the endocannabinoid and the 
somatostatin systems [71] with the latter regulating the 
proteolytic degradation of the amyloid peptide. The pres-
ence of other proteins has been linked to the degradation 
of the myelin [170].

The quality control processes of in vivo newly formed 
proteins and the elimination of abnormal proteins are 
phenomena with growing alterations with age [92, 138]. 
This results in the cellular and extra-cellular accumula-
tion of an increasing number of non-functional proteins 
that tend to form hydrophobic aggregates [117]. At the 
brain level, these toxic aggregates induce significant cel-
lular and functional losses that are the basis of many neu-
rodegenerative diseases [14]. In addition to the amyloid 
peptides and tau protein that are the canonical proteins 
of early AD and whose toxic deposits in brain tissue are 
the basis of mechanistic theories of neurodegeneration, it 
has been shown that a wide range of protein aggregates 
from other sources exist in the brain of elderly patients 
displaying a cognitive impairment or at first stages of AD 
[162]. Among the proteins significantly altered compared 
to controls, many are found in the biochemical cascade of 
glycolysis that primarily feeds cellular energy and whose 
intensity decreases with age, even faster in patients with 
AD [135]. Other strategic proteins form larger insoluble 
aggregates depending on symptomatologic impairment. 
These include glucose 6 phosphate isomerase creatine 
kinase B, certain forms of adenylate cyclase and calcium/
calmodulin protein kinase 2. This list is not exhaustive 
but reflects the importance of metabolic and functional 
disorders that develop over time in the brains of patients 
with mild cognitive impairments that worsen in AD [91].

It could be speculated that the accumulation of mis-
folded proteins during old age in multiple regions of 
the brain alters mitochondrial and metabolic functions, 
saturates the processes of cleaning and elimination of 
senescent cells, and slows down the neurogenesis that 
persists in the older brain [20, 80]. Inflammatory vasculi-
tis, hypoxia, and oxidative stress due to the accumulation 
of non-functional deleterious proteins are considered 
the primary factors in myelin envelope impairment. The 
decrease in electrical and metabolic activity of axons con-
tributes to the decrease in myelin density that surrounds 
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them leading to its gradual dislocation. The toxicity of Aβ 
peptides has been demonstrated in vitro against neurons, 
endothelial cells, astrocytes, vascular smooth muscle 
cells and oligodendrocytes [224]. Aβ peptides cytotoxic-
ity might involve the susceptibility of oligodendrocytes 
to oxidative stress because of its low content of reduced 
glutathione and high concentration of iron [190]. The 
Aβ peptides activation of the neutral sphingomyelinase-
ceramide pathway has been reported to induce oligo-
dendrocyte death [101]. In addition, inhibition of neutral 
sphingomyelinase 2 in these cells reduces their ceramide 
content and favor the myelination process by improving 
the quality of myelin structure [221].

Microbiome and myelin dysregulation in the 
neurodegenerative brain
A role for the gut-brain axis and for hepatic metabolism
Some arguments favor a view of AD as a disease that is 
not limited to the CNS alone but reflects multi-organ 
dysfunctions that contribute to or influence brain neuro-
degeneration [200]. Multiple proteinopathies, including 
the Aβ cascade, may come from peripheral organs that no 
longer metabolize abnormal proteins properly and allow 
their dissemination through a permeable BBB. Abnor-
mal communication between various compartments of 
amyloid proteins can contribute to altering brain disease. 
Chronic peripheral metabolic abnormalities are sus-
pected to participate or to worse neurodegeneration. In 
this regard, intestinal metabolism is often questioned.

The population of microorganisms of the gut micro-
biota constitutes a true symbiotic organ that has a great 
inter-individual heterogeneity due to many intrinsic and 

Fig. 4  Multiple Alzheimer’s disease etiologies and many cellular partners. Deleterious proteinopathies (in the first-place amyloid peptides) are to 
be integrated into the complex cellular environment of the brain. These multiple cellular elements participate in progressive multi-focal neuro-axonal 
degeneration leading to the irreversible symptomatology of AD. This is expressed when the toxic peptide removal systems are overwhelmed, which ap-
pears only after a long incubation period. Altered neurons express phases of hypo- and hyperexcitability with deficits in axonal transport and synaptic 
activity that affects myelination/remyelination activity and oligodendrocyte trophism. These are very vulnerable cells whose density decreases sharply 
with age. There seems to be a link between the intensity of neuronal involvement and the extent of demyelination. This is strongly accentuated in AD in 
which remyelination processes seem deficient. The activation of astrocytes participates in the elimination of deficient neurons and synapses. They actively 
participate in the elimination of abnormal proteins and inflammation processes, in the same way that the activation of microglia facilitates the phagocy-
tosis of cellular debris. In the same way, these cells participate in the activation of the innate immune responses, the activation of the complement and 
the secretion of inflammatory cytokines. Abbreviations: AD, Alzheimer’s disease; ROS, reactive oxygen species
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extrinsic factors dependent on genetic, medication (e.g. 
antibiotics), physical and hormonal activity, and infec-
tious factors [185]. The composition of the microbiome 
changes with age and the reactivity of the immune sys-
tem [129]. An active exchange via the bloodstream and 
intestinal innervation between the microbiome and the 
nervous system exist, whose influence is important dur-
ing the neurogenesis, the molecular organization of the 
connectome, and the variations of CNS myelination. 
These phenomena are especially different during periods 
of brain development or during aging [228].

In various transgenic models of familial AD, distur-
bances in the composition and diversity of the intestinal 
microbiome compared to healthy animals are observed 
[174]. In humans, it has also been described qualitative 
and quantitative changes in the population of intestinal 
bacteria in patients with cognitive disorders associated 
with cerebral amyloidosis [59, 118]. These disturbances 
can be the source of chronic neuroinflammation target-
ing several organs including the brain and a decrease in 
the immune response inducing neurodegeneration over 
the long term [26, 74]. These phenomena are increased 
by the leaky permeability of the BBB as a function of age, 
allowing the passage at the cerebral level of many toxics 
present at the periphery (Fig. 5) [213].

The problems of pathological cerebral aging are prob-
ably the result either of the evolution of protein targets 
at the central level, or the modification of a peripheral 
immune response [60, 182], the two mechanisms can 
combine over time to lead to an autoimmune altera-
tion colonizing the CNS and involving, in the first place, 
the components of myelin. Many environmental factors 
can promote this chronic process by perpetuating the 
homeostasis of the intestinal flora and at the origin of 
certain metabolic and cytotoxic disorders [15, 90]. This 
primarily affect oligodendrocytes, which are fragile cells 
of the CNS, and which adapt their functions through-
out the life of the individual. Many factors contribute to 
the activity of oligodendrocytes, intrinsic and environ-
mental factors that modify the status of the epigenome 
[165]. Among these factors, the composition and activity 
of the microbiome plays a reweighting role and interferes 
with the spatio-temporal character of myelination in the 
brain. In general, the relationships between the intesti-
nal sphere and the brain are of primary importance for 
myelination. This sphere includes not only the intestinal 
epithelium, but also hepatic metabolism, sympathetic 
and parasympathetic nerve activity, endocrine, and cyto-
kine secretions and metabolites of microbial origin [46]. 
The microbiota has an important role in the regulation 
of myelin plasticity as the existence of hyper-myelinated 

Fig. 5  Multiple communication system that includes neural, immune, endocrine, and metabolic pathways lead to degeneration. Continuous 
fluctuation of the microbiota due to the environment constantly influences the inflammatory, immune, and metabolic responses of the CNS [110]. With 
age, the permeability of intestinal and BBB is often impaired [84, 161]. The gut microbiota metabolizes and release many growths, metabolic and inflam-
matory factors which could penetrate the brain via the circulating blood. These substances contribute to increase the inflammatory, immune, and oxida-
tive phenomena that exist in the elderly brain due to the accumulation over time of many abnormal proteins due to their hydrophobic conformation. The 
very likely origin of these malformed proteins is found in the accumulation during senescence of many mutations in post-mitotic cells that are neurons [9, 
76]. In addition, the role of epigenetic dysregulation of gene expression induced by aging or abnormal environmental stimulation is also considered to be 
an important factor in neurodegeneration and cognitive alterations [125]. Abbreviations: BBB, blood-brain barrier; CNS, central nervous system
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axons has been demonstrated in germ-free mice or 
treated chronically with antibiotics [72]. This abnormal-
ity could be a consequence of neuronal hyperactivity in 
certain regions of the brain of these mice, such as the 
amygdala or the prefrontal cortex. The development of 
myelinating oligodendrocytes is controlled by a set of 
transcription factors (Sox 10 and Myrf for example) that 
drive the steps of myelination and re-myelination [7]. The 
anomalies of these phenomena alter certain brain func-
tions, those concerning cognitive functions. Restoring a 
normal microbiome in germ-free mice greatly improves 
their social and executive performance [173, 189, 191].

It is now recognized that disorders intestinal physiol-
ogy can influence the risk of Alzheimer’s and its rate of 
progression. Deposits of aggregate of Aβ peptides at the 
intestinal level have been detected in AD patients [74], 
but most of the results involving the intestinal sphere 
and the progression of AD have been obtained in animal 
models. The ratios between Firmicutes and Bacteroidetes 
are considered strategic in the composition of the human 
intestinal microbiota [168]. The fecal microbiota is the 
product of a very complex and diverse ecosystem, and 
its composition can modify the accumulation of intes-
tinal APP in the early phases of AD [29, 119]. In trans-
genic APP/PS1 animals, an increase in Aβ peptides levels 
have been observed in the CNS in relation to changes in 
the intestinal flora, accompanied by disorders of spatial 
memory [225]. Oligodendrocytes and myelin sheaths 
may be the first to be affected by these deleterious depos-
its. A parallel can be observed between the myelin altera-
tions observed in AD and during normal aging in the 
elderly. In the latter case, the installation of progressive 
ischemia could be the cause of this demyelination [137, 

177]. The lesions often appear disseminated with a predi-
lection for intracortical axons of small diameters that are 
myelinated late during development. Myelin dystrophies 
lead to axonal alterations and neuronal death with differ-
ent rate in individuals [163].

Conclusion and perspectives
To conclude, myelin damage and its several possible 
outcomes (Table  1) is one of the early lesions observed 
in many clinical forms of AD. Even though many differ-
ences exist in the presentations and structural alterations 
between multiple sclerosis and AD, neurodegenerative 
alterations between both pathologies have common etiol-
ogies and mechanisms [113]: long-standing inflammatory 
disorders, some autoimmune reactions, cognitive impair-
ments, and mitochondrial alterations [104, 184]. Amy-
loid disorders are not absent from the pathophysiology 
of multiple sclerosis and Aβ peptides levels are generally 
lower in the CSF of patients with multiple sclerosis who 
have cognitive impairment [93]. The accumulation of 
APP in the brain of these patients appears parallel to the 
worsening of symptomatology and dynamic processes of 
demyelination/remyelination [25]. These parallels remain 
hypotheses at present, but there are indications that 
some mechanistic similarities exist.

Current mechanistic hypothesis favors long-term dys-
functions in the proteolysis of APP and in the accumula-
tion of hydrophobic Aβ peptides with multiple toxicities. 
These lead to inflammatory, oxidative, and immune reac-
tions leading to massive cellular apoptosis accompanied 
by post-translational modifications on target proteins 
inducing profound functional alterations in brain cells 
activities. It seems possible that a multiplicity of muta-
tions and epigenetic alterations of neuronal genomes, 
associated with intrinsic or extrinsic predisposing fac-
tors, generate metabolic and inflammatory alterations 
over the long term, inducing a multiplicity of phenotypic 
and clinical presentations involving secondarily multiple 
deleterious proteinopathies, including amyloidosis of Aβ 
types.
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Table 1  Examples of different outcomes of myelin damages
Myelin modifications References
Demyelination (as evidenced, for example, by decreased 
myelin water fraction)

[18, 48, 83, 
94, 137, 177]

Rupture of the myelin envelope [38, 150, 202]

Myelin reshuffle [16, 47, 165, 
179]

Defect in myelin biosynthesis (loss of ceramide synthase 
2 activity)

[32]

Down-regulation of myelination network [3]

Morphological abnormalities of myelin sheaths, in the 
form of edema and thinning of the envelope surround-
ing myelinated axons

[49, 137, 229]

Myelin degeneration -> driving cognitive and motor 
impairment

[27, 153]

Changes of myelin organization (q-Space myelin map 
imaging)

[148]

Myelin instability [35, 203]

Myelin damage in cortical gray matter (Western blot 
quantification of MBP and dMBP)

[227]

Decrease of myelin density (multi-echo T2 relaxation 
time technique)

[99]
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